Appendix 2. Calculating the net costs of hospital-acquired infection

Assumptions

The change in the variable costs attributable to a case of hospital-acquired infection (HAI) is \$100.

The change in variable costs attributable to a new admission is \$750.

Calculations

Incidence of wound infection	10%	5%	0%
(1) Total admissions achieved ^a	50,000	51,220	52,500
(2) Extra cases that could be treated if incidence was 0% b	2,500	1,280	0
(3) Number that acquire HAI ^a	5,000	2,561	0
(4) Lost revenue (gross cost of HAI) ^a	\$3,125,000	\$1,600,000	\$0
(5) Variable costs if extra cases were treated ^c	\$1,875,000	\$960,000	\$0
(6) Variable costs for each case of infection ^d	\$500,000	\$256,100	\$0
(7) Net cost of HAI ^e	\$1,750,000	\$896,100	\$0

^aSee <u>Appendix 1</u> for details of how this figure is derived.

^bCalculated by ([1] at 0%) – ([1] at 10%) and ([1] at 0%) – ([1] at 5%).

^cCalculated by (2) x \$750.

^dCalculated by (3) x \$100.

 $^{^{}e}$ Calculated by (4) + (6) - (5); these data are used to plot Line B2 in Figure 1.