
444	 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 21, No. 3, March 2015

DISPATCHES
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To explain the spread of the 2014 Ebola epidemic in West 
Africa, and thus help with response planning, we analyzed 
publicly available data. We found that the risk for infection in 
an area can be predicted by case counts, population data, 
and distances between affected and nonaffected areas.

The first cases of the 2014 Ebola epidemic in West Af-
rica (49 cases in Guinea) were reported on March 21 

(1). By November 4, the World Health Organization had 
reported 13,241 cases in the 3 primarily stricken countries 
of Guinea, Sierra Leone, and Liberia and single cases in 
Senegal and Mali (2). Although virus transmission to other 
countries (Nigeria, United States, and Spain) has occurred 
via air travel, most infections have spread regionally via 
ground movement of sick persons. To aid with response 
planning, we sought to explain this regional spread by as-
sessing publicly available information.

The Study
The data analyzed were case counts, population data, and 
distances between affected and nonaffected districts (these 
distances are influential predictors in the spread of infectious 
diseases) (3–5). We first classified as affected those dis-
tricts  within Guinea (prefectures), Sierra Leone (districts), 
and Liberia (counties) that had reported to the World Health 
Organization >1 suspected, probable, or confirmed case of 
Ebola virus infection from the weeks ending March 29, 2014 
(epidemiological week 13), through August 16, 2014 (epide-
miological week 33) (2). For each district, we considered the 
week of its first reported case as the week it became affected 
(online Technical Appendix Figure 1, http://wwwnc.cdc.
gov/EID/article/21/3/14-1845-Techapp1.pdf). We also iden-
tified the population-weighted geographic centroid (center of 
an area, adjusted for its population density) in each district 
and computed the distance from these centers to similar cen-
ters in each affected district.

We then created 4 regression models to calculate the 
weekly risk of a district being affected as a function of com-
binations of its population, the sum of inverse distances 
(SID) from all affected districts, and SID weighted by the 
number of new cases in affected districts over the preceding  

3 weeks (online Technical Appendix Table 2). We chose the 
best model by examining how well it fit the data available 
through week 33 (August 16). We then evaluated how well 
the chosen model predicted that districts would become af-
fected as the outbreak continued by comparing calculated 
probabilities that a district would become affected (at weeks 
33, 36, and 39) to actual reports of newly affected districts 
over the subsequent 3-week periods (weeks 34–36 [period 
1], weeks 37–39 [period 2], and weeks 40–42 [period 3], re-
spectively). By using data available through week 42, we cal-
culated probabilities that districts in countries bordering the 
3 primarily affected countries (departments in Côte D’Ivoire, 
circles in Mali, departments in Senegal, sectors in Guinea-
Bissau, and divisions in Gambia) would become affected.  

We assumed that country and district borders were po-
rous and that infected persons could not be prevented from 
moving into nonaffected areas (6–8). Reports from the field 
support this assumption, even after country borders were 
officially closed (9). We also assumed no heterogeneities in 
the capabilities of the different areas to identify and report 
cases and that aggregating case count reports into a weekly 
unit of analysis would blunt the effects of reporting delays. 
Our last assumption, for identifying an affected district, 
was that suspected and probable cases were as sensitive and 
specific as confirmed cases.

Among the 3 primarily affected countries, 39 districts 
were affected in 12 weeks (during weeks 13–33). The mod-
el that best explained this pattern was one in which the risk 
of a district becoming affected depended on its population 
and the SID from all affected districts to a nonaffected dis-
trict and in which each inverse distance is multiplied by 
the sum of new cases within the past 3 weeks (weighted 
SID) (online Technical Appendix Table 2 and Figure 2). 
The overall average weighted SID was greater for districts 
during the weeks in which they became affected than for 
districts that had not yet reported cases by the same week 
(online Technical Appendix Figure 3, panel A).

Figure 1 shows the probabilities for specific districts 
becoming affected at weeks 33, 36, and 39. The ranking of 
districts by their probabilities on week 33 (Figure 1, panel 
A) illustrates the good fit of the model because 27 (87%) 
of the 31 districts ranked in the top half (most likely to be-
come affected) were actually affected.

During weeks 34–36 (period 1), 4 districts became af-
fected; during weeks 37–39 (period 2), 4 districts became 
affected; and during weeks 40–42 (period 3), 5 districts 
became affected. The model predicted well which districts 
would become affected during periods 1 and 3 (Figure 1, 
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panels A, C); districts that became affected were predomi-
nantly among those with the highest calculated probabili-
ties of becoming affected. The model did not predict as 
well which districts would become affected during period 
2 (Figure 1, panel B).

Of 167 districts in the countries bordering the primar-
ily affected countries, the predicted probability of becom-
ing affected was >20% for 9 districts (calculated at week 
42). The 3 top-ranked districts had the largest populations 
in their respective countries: Abidjan (Côte D’Ivoire), Ba-
mako (Mali), and Pikine (Senegal); Bamako and Pikine re-
ported cases in weeks 43 and 35, respectively. Also, among 
the top 10 districts, 5 were on or near the Côte D’Ivoire– 
Liberia border (Figure 2).

Conclusions
We identified spatial influences on the regional spread of 
Ebola virus infections. The risk of becoming affected by 
Ebola was significantly higher for nonaffected districts that 
had a larger population and that were closer to affected dis-
tricts with higher case counts (online Technical Appendix 
Table 2 and Figure 2). Thus, it seems that data on population 
size and straight-line distances can serve as pragmatic alter-
natives to data on travel patterns between Guinea, Liberia, 
and Sierra Leone during the first 8 months of the outbreak. 
The correlation between the risk of becoming affected and 
distances and population size was sufficiently accurate for 
predicting which districts would next become affected. Fur-
thermore, a high calculated probability of becoming affected 
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Figure 1. Probability predictions (with 95% CIs) for districts in countries primarily affected by Ebola virus infection in 2014, by week of 
analysis. A) Data available through week 33 (August 16). B) Data available through week 36 (September 6). C) Data available through 
week 39 (September 27). Diamonds indicate the probability that the districts should be affected at the time of the analysis. Filled 
diamonds indicate districts that were affected (i.e., had reported at least 1 case) at the date of the analysis. Black arrows identify those 
districts that became affected within 3 weeks of the date of analysis. SL, Sierra Leone; Gu, Guinea; Li, Liberia.
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for a district considered not affected might indicate the pres-
ence of undetected cases.

This analysis relied heavily on the accuracy of case 
reports and their timely documentation, but there are in-
dications that extreme conditions in the affected countries 
resulted in incomplete records and reporting delays (10). 
These factors potentially contributed to errors in the iden-
tification of which week a district became affected. Conse-
quently, we examined the potential effects of reporting de-
lays (online Technical Appendix Table 2). Also, our results 
might have been influenced by our choice of administra-
tive unit level to use for defining districts. (In our analysis, 
countries with smaller district units have less risk of being 
affected than countries with larger district units, if popula-
tion densities are generally comparable.)

The good fit of our model, absent predictors for the in-
fluence of interventions, suggests that interventions (includ-
ing border closings) were minimally effective at stemming 
regional spread of Ebola virus infection during the period an-
alyzed. As the spread of the epidemic changes because of in-
terventions and changes in human behavior, there is need to 
update and reevaluate the model fit and the parameters used.

We chose to not pursue data on travel patterns, despite 
their potential utility for explaining the spread of Ebola vi-
rus infection. Travel patterns may evolve as the outbreak 
progresses, and obtaining accurate data during an ongoing 
outbreak is challenging. We, therefore, focused on produc-
ing the simplest model.

Overall, our simple model shows that available case 
reports, population data, and distance data can be used to 
identify areas at risk of being affected in an outbreak of 
Ebola virus infection. Additionally, if the current pattern of 
spread in this outbreak continues, or if the outbreak takes 
hold in new countries, this model can be used to advocate 
for allocation of surveillance and control resources to non-
affected areas.
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Figure 2. Predicted risk of districts becoming affected by Ebola virus infection (neighboring countries included) in 2014, based on data 
available through epidemiological week 42 (October 18, 2014).
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