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Randomness and Dengue Outbreaks on 
the Equator  

Technical Appendix 

Statistical Modeling Approach 

The aseasonal model described in the paper belongs to a group of regression models 

called autoregressive models. In these models, the number of dengue cases during 1 week is 

regressed upon the incidence in preceding weeks. The order of the model (i.e., the number of 

preceding weeks to autoregress upon) is selected to ensure that there are no further correlations 

between the model “errors,” or differences between observed and predicted numbers of cases. 

This process of selecting the order of the model was done by using the Portmanteau, or Ljung-

Box, statistical test (1), which suggested the number of dengue cases needed to depend on the 

weekly number of cases during the previous 4 weeks to meet this statistical requirement. (Using 

a simpler model that depended on just the previous week did not substantively change the 

findings in the paper.) To account for incidence necessarily being positive, we used the standard 

approach of logging the number of dengue cases before modeling them; this approach had a 

secondary benefit of making the variability more stable. Letting the number of cases in week 𝑡 

be 𝐷𝑡, we therefore calculated and worked with 𝑦𝑡 = ln (𝐷𝑡). The fitted model was  

𝑦𝑡 = 0.29 + 0.62𝑦𝑡−1 + 0.32𝑦𝑡−2 + 0.13𝑦𝑡−3 − 0.14𝑦𝑡−4 + 𝑒𝑡 

where 𝑒𝑡 is random noise assumed to follow a normal distribution with mean 0 and SD 0.22 (the 

latter estimated from the data). These estimates were obtained by using the standard regression 

method of least-squares. The model therefore captures the decay in the risk of secondary cases 

over the 4 weeks after infection. 

The fitted model was used to simulate synthetic datasets that, because the model contains 

no seasonal forcing, are governed purely by randomness (the 𝑒𝑡 terms) and short-term contagion 

(the 𝑦𝑡−1 to 𝑦𝑡−4 terms) but by no other drivers. Three examples are provided in Figure 1 in the 

main text. From these simulated data, which covered thousands of hypothetical decades of 
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dengue in Singapore, summaries were extracted that could be compared to the analogous 

summary from reality. These summaries provide a way to falsify the aseasonality model if the 

actual summary falls outside the range from the simulations. The summaries were inspired by 

metrics used in “the hot hand in basketball” perception of randomness study (2) but adapted to 

the context of weekly case counts of dengue. These metrics included the following: 

1. The autocorrelation function. This function is the correlation between the (log 

transformed) number of cases for 1 week against the number 𝑘 weeks later (i.e., 

between 𝑦𝑡 and 𝑦𝑡+𝑘). This function drops from 1 for small lags 𝑘 to 0 for large 

lags. The speed at which it drops indicates the degree of memory in the dengue 

time series (e.g., if there is a high incidence of dengue 1 week, there should be a 

high incidence during the following week). Each simulation yielded a single 

curve, over which the curve for the data was overlaid. 

2. The cumulative probabilities. For a particular number of cases, say 𝐷, this 

metric is the proportion of weeks with 𝐷 or fewer cases. It therefore captures the 

overall distribution of dengue incidence but more smoothly than a histogram 

would. Again, each simulation yielded a single curve, over which the curve for 

the data was overlaid. 

3. The conditional probability of a rise in the number of dengue cases from 1 

week to the next (𝑡 to 𝑡 + 1), given that a rise occurred between week 𝑡 − 1 and 

week 𝑡. Similar probabilities given 2 or 3 successive rises, or 1 to 3 falls, were 

also considered. These probabilities were calculated directly from the simulations, 

summarized with a 95% CI, and the corresponding proportions in the historical 

time series overlaid. 

4. The yearly number of cases. The distribution from simulations was summarized 

by using the statistical technique called kernel density estimation, and the 10 

yearly counts from the data were overlaid. 

5. The maximum weekly number of cases over 10 years. Again, simulated 

maxima were summarized by using kernel density estimation, with the maximum 

weekly incidence observed over the decade in question overlaid as a point. 
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We also created a further statistical test that counted the number of runs (i.e., the number 

of weeks of successive rises or falls in dengue incidence). The distribution of the number of runs 

was obtained from the set of simulated datasets and used to generate a p value for the hypothesis 

that the aseasonal model generated the observed dataset. 

The rationale for these summaries is that they capture more complex properties that 

emerge from the simple aseasonal model described above but that should not concord with the 

data if seasonal drivers were needed to explain the patterns observed. For instance, with clear 

seasonal epidemics, following a run of week-on-week rises in incidence, a further rise would be 

noticeably more likely than 50%, whereas a random process (like the aseasonal model) would 

see this probability much closer to 50%.  

In subtropical Taiwan, for example, there is clear seasonality, which is reflected in cycles 

in dengue epidemics (Technical Appendix Figure 1, panel A). Simulations from the aseasonal 

model (Technical Appendix Figure 1, panels B–D) fail to capture both the seasonality and size of 

dengue outbreaks. The 5 measures we developed were able to indicate clear discrepancies 

between the data and the simulations (Technical Appendix Figure 2, panels A and C). For 

equatorial Singapore, however, for all the characteristics considered, the historic data were 

consistent with every metric we devised to test the aseasonal model: 

1. For the autocorrelation function (Technical Appendix Figure 2, panel A), the 

actual autocorrelation falls near the middle of the distribution of simulations 

under the aseasonal model for all weeks considered, up to the point when the 

autocorrelation reached 0 (around 6 months). The close correspondence between 

simulated and observed autocorrelation functions indicates that the random, 

aseasonal model exhibits the same degree of memory as the actual time series; 

that is, following an epidemic peak, the outbreak reverts to endemic levels at the 

correct pace; from a trough, epidemics occur at the correct speed. 

2. Similarly, the observed cumulative probability function (Technical Appendix 

Figure 2, panel B) falls near the middle of the distribution of model predictions 

for all values of the weekly incidence up to the maximum weekly incidence 

observed. This function indicates that the aseasonal model gives the correct 

frequency and size of endemic and epidemic phases. 
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3. The conditional probabilities of rises in the weekly number of cases from 1 week 

to the next given runs of rises or falls (Technical Appendix Figure 2, panel C) was 

also consistent between data and model and in the opposite direction to what 

would be expected given seasonal forcing, with a fall more likely to follow a rise 

and vice versa. With seasonal forcing, we would expect positive correlations in 

weather conditions from 1 week to the next to translate to positive correlations in 

epidemic growth or decline.  

4. The 10 annual incidences (Technical Appendix Figure 2, panel D) were fully 

consistent with the distribution from the model predictions. These incidences 

indicate that the aseasonal model gives annual tallies that are consistent with those 

we observed.  

5. The peak number of weekly cases over 10 years (Technical Appendix Figure 2, 

panel E) is similarly within the range of plausible scenarios under the aseasonal 

model.  

The test for the number of runs did not find any deviation from the aseasonal model (p = 0.18), 

indicating that the consistency of epidemic rise and fall from 1 week to the next also agrees with 

the absence of seasonality. Further, simulated epidemics (Technical Appendix Figure 1) 

expressed qualitatively similar behavior to the historic patterns, with similar magnitude and 

frequency of epidemics and similar endemic behavior. 
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Technical Appendix Figure 1. The aseasonal model applied to Taiwan (2011–2014). A) Dengue trend 

over >3 years in Taiwan. Clear seasonality can be observed, and epidemics tend to appear at year end. 

B–D) Aseasonal simulation models. The timing and size of outbreaks differ markedly from the actual 

scenario of observed dengue incidence. 
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Technical Appendix Figure 2. Comparison of observed dengue incidence and the simulated aseasonal 

model in Taiwan. A) Distribution of simulated autocorrelation functions and actual autocorrelation 

functions at different lags. B) Distribution of cumulative density function of the simulated weekly number 

of cases and cumulative density function of the actual numbers. C) Conditional probabilities of an 

increase in number of dengue cases and 95% CIs for simulated scenario and actual data, given 1–3 

consecutive decreases or increases. D) Density plot of simulated yearly number of cases and actual 

number. E) Density plot of simulated 10-year maximum and actual number. 


