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Talaromyces marneffei and other Talaromyces species can 
cause opportunistic invasive fungal infections. We char-
acterized clinical Talaromyces isolates from patients in 
California, USA, a non–Talaromyces-endemic area, by a 
multiphasic approach, including multigene phylogeny, ma-
trix-assisted laser desorption/ionization time-of-flight mass 
spectrometry, and phenotypic methods. We identified 10 
potentially pathogenic Talaromyces isolates, 2 T. marneffei.
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T alaromyces marneffei is a dimorphic fungal patho-
gen that causes focal or systemic infection in immu-

nocompromised persons, primarily HIV-infected patients 
(1). Many cases have been reported in travelers returning 
from areas of Southeast Asia, southern China, and eastern 
India to which it is endemic. Other Talaromyces species 
also have been reported to cause invasive fungal infections, 
including T. amestolkiae (2), T. purpurogenus (3,4), and T. 
piceus (5,6). Talaromyces species are common in air, soil, 
and human habitats. Clinical laboratories in areas to which 
this fungus is not endemic often do not perform identifi-
cation of T. marneffei and other Talaromyces species (2). 
Therefore, we devised a multiphasic approach for identify-
ing T. marneffei and other potentially pathogenic Talaro-
myces species.

We conducted this study during 2018. Talaromyces 
isolates from 10 human specimens were submitted to the 
Microbial Diseases Laboratory (MDL), California De-
partment of Public Health (Richmond, CA, USA), to rule 
out T. marneffei (Appendix, https://wwwnc.cdc.gov/EID/
article/25/9/19-0380-App1.pdf). Temperature and pH are 
known to influence pigment production and colony mor-
phology of Talaromyces species; therefore, growth char-
acteristics were observed using 2 different culture media 
(Sabouraud dextrose agar, pH 5.6; and Sabouraud dextrose 
agar, Emmons, pH 6.9), incubated at 25°C and 30°C. Fun-
gal DNA was extracted using a previously reported method 
(7). Talaromyces isolates were identified to species level 
using the internal transcribed spacer (ITS) region, partial 
β-tubulin gene (BenA), and partial RNA polymerase II 
largest subunit gene (RPB1) (8). The ITS and partial BenA 
and RPB1 sequences were used to search for homologies 
in GenBank and CBS databases (http://www.westerdi-
jkinstitute.nl/collections). Multigene phylogenetic analy-
sis was conducted on the concatenated ITS–BenA–RPB1 
nucleotide sequence alignment (Appendix). A blastn search 
(https://blast.ncbi.nlm.nih.gov/blast) through the GenBank 
database, pairwise comparison alignment through the CBS 
database, or both showed 99%–100% homology for ITS, 
97%–100% for BenA, and 91%–100% for RPB1 sequenc-
es with the best-matched sequences of known Talaromyces 
species isolates.

Phylogenetic analysis of the Talaromyces isolates 
showed 7 genetic clades, consistent with previous descrip-
tions of the Talaromyces genera (9) (Figure). Species iden-
tification using a comparison of the ITS, BenA, and RPB1 
sequences with existing sequences and multigene phyloge-
netic analysis identified T. marneffei (isolates MDL17022 
and MDL18026), T. atroroseus (MDL17026, MDL17144, 
MDL17164, and MDL18070), T. islandicus (MDL18167), 
T. stollii (MDL18054), T. coalescens (MDL18102), and 
T. australis (MDL18159). The 2 T. marneffei isolates pro-
duced diffuse red pigment early, by 3 days of growth, on 

both medium types and at both incubation temperatures. 
T. australis and T. stollii isolates also produced red pig-
ment by 3 days but with variations based on media or tem-
perature. At 7 days of growth, the 4 T. atroroseus isolates 
also showed variable red pigment production (abundant, 
weak, and absent) (Appendix). Microscopically, most iso-
lates showed biverticillate conidiophores and globose to 
fusiform conidia in unbranched chains. Both T. marneffei 
isolates were from HIV-positive patients. MDL17022 was 
from a blood sample of a 37-year-old man with a travel his-
tory to Southeast Asia; MDL18026 was from skin tissue of 
a 36-year-old man with no available travel history.

Using matrix-assisted laser desorption/ionization-
time-of-flight (MALDI-TOF) mass spectrometry, we 
generated main spectrum profiles (MSP) of Talaromyces 
species following Bruker’s custom MSP and library cre-
ation standard operating procedure (https://www.bruker.
com). We extracted proteins of Talaromyces isolates us-
ing the previously published National Institutes of Health 
(NIH) protocol (10). We analyzed Talaromyces spectra 
with MALDI Biotyper 4.1 software against combined da-
tabases of the Filamentous Fungi Library 2.0 (Bruker) and 
the NIH Mold Library (10), with and without inclusion of 
newly created MSPs of Talaromyces species (Appendix). 
The threshold for species identification was >1.9; for ge-
nus identification, >1.7. 

Using the combined databases of Filamentous Fungi 
Library 2.0 (Bruker) and NIH Mold Library, we identified 
none of the isolates to species level; results showed either no 
identification or genus-level identification. However, when 
we expanded the combined database with the MDL Mold Li-
brary, we correctly identified all Talaromyces isolates to the 
species level with the best score >1.9. There were no ambig-
uous identification results; that is, the second-best matched 
species also had a high confidence score >1.9.

T. marneffei can be readily differentiated from other 
red pigment–producing Talaromyces species by yeast-like 
colony conversion at 37°C. However, many clinical lab-
oratories no longer conduct yeast conversions. For those 
laboratories, yellow-green colonies producing red soluble 
pigment at ≈3 days on common fungal culture media at 
25°C–30°C might indicate the need to further confirm T. 
marneffei. It is difficult to distinguish Talaromyces species 
only by macroscopic and microscopic examination. Mul-
tilocus sequencing, although confirmatory, might be too 
time-consuming and expensive for routine use. Therefore, 
we identified all Talaromyces isolates to species level by 
MALDI-TOF mass spectrometry by using an expanded da-
tabase with well-characterized Talaromyces strains. 

In conclusion, our results show that MALDI-TOF 
mass spectrometry is a good choice for rapid, less expen-
sive primary identification of Talaromyces species and 
other medically important fungal pathogens. Species-level 
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identification of Talaromyces isolates is clinically useful 
for treatment of patients with underlying conditions, such 
as immunodeficiency, cancer, advanced age, and immuno-
suppressive therapy.
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Figure. Phylogenetic analysis 
of Talaromyces species 
based on concatenated 
nucleotide alignments of 
internal transcribed spacer, 
partial β-tubulin gene, and 
partial RNA polymerase II 
largest subunit gene regions, 
showing the relationship 
among clinical isolates from 
patients in California, USA 
(black squares), and reference 
Talaromyces species. The 
tree was constructed by the 
neighbor-joining method with 
1,000 bootstrap replicates 
by using MEGA software 
(https://www.megasoftware.
net). Bootstrap support values 
>70% are presented at the 
nodes. The tree was rooted 
with Trichocoma paradoxa CBS 
788.83. GenBank accession 
numbers for newly generated 
sequences are MK601832–41 
for the internal transcribed 
spacer, MK626499–508 for the 
β-tubulin gene, and MK626509–
518 for the RNA polymerase 
II largest subunit gene. CBS, 
Westerdijk Fungal Biodiversity 
Institute; MDL, Microbial 
Diseases Laboratory, California 
Department of Public Health. 
Scale bar indicates estimated 
phylogenetic divergence.
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Parathyridaria percutanea is an emerging fungus causing 
subcutaneous phaeohyphomycoses in renal transplant re-
cipients in India. We identified P. percutanea from a patient 
with subcutaneous phaeohyphomycosis. From our culture 
collection, we identified the same fungus from 4 similar pa-
tients. We found 5 cases previously described in literature. 

Parathyridaria percutanea, earlier known as Rous-
soella percutanea in the order Pleosporales, has 

been reported to cause subcutaneous phaeohyphomycoses 
(1,2). P. percutanea belongs to coelomycetes, a group of 
fungi in which the conidia or asexual propagules lie with-
in a cavity. Parathyridaria spp. generally exist as plant 
saprobes; P. percutanea is the only species reported as an 
opportunistic pathogen. 

We recently observed a case of subcutaneous phaeo-
hyphomycosis caused by P. percutanea. The patient was 
a 33-year-old man who had ACTH-dependent Cushing’s 
disease with 2 cutaneous lesions, one under the left axilla 
and the other on the ulnar aspect of the left forearm, that 
had progressed slowly over 3 years (Appendix Figure 1, 
panel A, https://wwwnc.cdc.gov/EID/article/25/9/19-0383-
App1.pdf). Direct microscopy of a biopsy sample taken 
from the left forearm lesion revealed dematiaceous septate 
hyphae with irregular hyphal swellings (Appendix Fig-
ure 1, panel B). Colonies on Sabouraud’s dextrose agar at 
25°C were flat, spreading with sparse aerial hyphae after 
1 week, and later turned to cottony greenish-black growth 
(Appendix Figure 1, panel C). Lactophenol cotton blue 
mount revealed nonsporulating dematiaceous hyphae with 
chlamydospores (Appendix Figure 1, panel D). Several at-
tempts to induce sporulation (on oatmeal agar and malt ex-
tract agar) failed. Histopathologic examination (Appendix 
Figure 1, panels E–G) showed neutrophilic infiltration with 
fungal hyphae, nodular swellings on Giemsa stain, and 
black hyphae on Grocott-Gomori’s methamine silver stain.

We identified the fungus as Roussoella percutanea of 
the order Pleosporales, later renamed P. percutanea, by PCR 
sequencing of the internal transcribed spacer (ITS) and 28S 
regions of ribosomal DNA, as described previously (3). ITS 
sequencing of our strain NCCPF104001 (GenBank acces-
sion nos. MG708109 [by ITS] and MG708116 [by 28S]) had 
99.8% identity with CBS128203 (type strain, GenBank ac-
cession no. KF322117) and CBS868.95 (GenBank accession 
no. KF322118), whereas 28S sequences had 100% identity 
with CBS128203 (GenBank accession no. KF366448) and 
CBS868.95 (GenBank accession no. KF366449) (Appendix 
Figure 2, panels A. B). The patient refused further treatment 
in the hospital and left against medical advice.

We screened all the isolates deposited in our National 
Culture Collection of Pathogenic Fungi (NCCPF, Chandi-
garh) and characterized them phenotypically as Pleospora-
les. Of 7 such isolates, we identified 4 as P. percutanea by se-
quencing (Table, https://wwwnc.cdc.gov/EID/article/25/9/ 
19-0383-T1.htm). We further subjected these isolates to 
phylogenetic analysis of ITS and large ribosomal subunit 
(28S) of the rDNA using MEGA software version 6 (https://
megasoftware.net) (3). The strains identified as P. percuta-
nea clustered together with the ITS and 28S sequences of 
CBS12608 and CBS868.95 strains, the other 2 P. percutanea  
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