
 

Page 1 of 15 

Article DOI: https://doi.org/10.3201/eid2807.220033 

Analyzing and Modeling the Spread of 
SARS-CoV-2 Omicron Lineages BA.1 and 
BA.2, France, September 2021–February 

2022 
Appendix 1 

Multinomial Log-Linear Model 

To perform the multinomial log-linear model, we used the multinom function from the 

nnet R package. This function uses neural networks to perform model selection in a stepwise 

manner starting from the null model (i.e., without any predictor). 

The model formula was the following: variant ~ age + assay + location_sampling + 

date:region, where age is the age of the individual (which is treated as an integer and centered 

and scaled), location_sampling is a binary variable indicating whether the sample was collected 

in a hospital or not, assay corresponds to the type of screening test used, date is the sampling date 

(which is treated as an integer and centered and scaled), and region is the French administrative 

region of residency. 

The multinom function uses an AIC criterion to identify the best model and returns the 

estimated multinomial logistic regression coefficients as well as their standard error (SE). 

These can be used to calculate a z-test statistic, which is simply the ratio of the 

coefficient value to the SE. From there, we can construct a p-value, p > |z|, which is the 

probability the z-test statistic would be observed under the null hypothesis and assuming that z 

follows a normal distribution. Here, we use a classical significance threshold of α = 5%. When 

the p-value is smaller than α, the null hypothesis can be rejected and the parameter is considered 

to be significant. 
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Note that an alternative approach could be to calculate the 95% confidence interval for 

the coefficient value of the multinomial model using the SE and a critical value on the standard 

normal distribution. 

To give a more intuitive interpretation of the results, we compute the relative risk ratios 

(RRR) by taking the exponential of the coefficient values of the model. The RRR reflects, for a 

given variable, how the risk of belonging to one of the outcomes (here variant detection) varies 

compared to the control group. 

Further details about multinomial log-linear models and their interpretations can be found 

at https://stats.idre.ucla.edu/stata/output/multinomial-logistic-regression/. 

Selection Advantage Estimation 

The selection advantage is estimated from the Malthusian growth rate of the ‘population’ 

of variant-specific tests. More precisely, following methods developed in population genetics to 

estimate the selection coefficient of a mutant allele compared to a wild type allele (1), and 

following earlier studies in epidemiology (2–4), we calculate the selection coefficient s by fitting 

a logistic growth model to the time series of variant frequency. 

Indeed, provided that the selection coefficient s does not var.y over time, and by denoting 

p(t) the frequency of an allele (here screening test result A0B0C0 or A0B0C1) in the population 

(here all tests with results A0B0C0 or A0B0C1), we have the following relationship: 

𝑠𝑠 = 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑝𝑝(𝑡𝑡)

1−𝑝𝑝(𝑡𝑡)� (S1) 

Note that this value needs to be scaled with respect to the generation time T, which is 

here obtained from the serial interval calculated by Nishiura et al. (5). Overall, the transmission 

advantage sT of A0B0C0 tests over A0B0C1 tests is given by the formula sT = s T. 

To estimate s, for each region of interest separately, we first perform a generalized linear 

model (GLM) with a binomial distribution of the residuals (i.e., a logistic regression) where the 

response variable is the test result (A0B0C0 or A0B0C1) and the covariates are the age of the 

individual (which is treated as an integer and centered and scaled), the assay used for the test, the 

sampling date (which is treated as an integer and centered and scaled), and the sampling region, 
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which is the French administrative region. We then use the fitted values from the GLM to 

perform the fit of the logistic growth function. 

We use 21 days windows to estimate transmission advantage, which corresponds to two 

95% confidence intervals (CI) of the serial interval used. This duration was chosen to be long 

enough to avoid false-positive signals and short-enough to allow for rapid detection of variations 

in s. 

We also inferred the transmission advantage using the updated version of the R package 

EpiEstim (6) available at https://github.com/mrc-ide/EpiEstim. We only consider A0B0C0 and 

A1B1C1 test results and assume that both have the same serial interval (that from [5]). 

Further details about the implementation of the inference can be found in the 

Supplementary R script with the Supplementary data. 

Cycle Threshold Analyses 

Statistically, we use a linear model with the following formula:  

Ct ~ age + variant + location_sampling + date*region, where age is the age of the individual 

(which is treated as an integer and centered and scaled), variant is the outcome of the screening 

test, location_sampling is a binary variable indicating whether the sample was collected in a 

hospital or not, date is the sampling date (which is treated as an integer and centered and scaled), 

and region is the French administrative region of residency. We also include interactions 

between the region and the sampling date in the model to capture variations in Ct values that 

could be linked to differences in epidemic reproduction numbers. Indeed, growing epidemics can 

be associated with lower Ct values than declining epidemics (7,8). 

We used a likelihood ratio test to compare this model and a model without the variant 

covariate. Adding this covariate does significantly improved the model. 

Covariate significance was assessed using an analysis of variance (ANOVA) with a type 

II error using the Anova function from the car package in R. 

The estimated marginal means (EMMs) for the Ct values associated with the screening 

tests results were computed using the emmeans function from the eponym R package. 



 

Page 4 of 15 

Mathematical Modeling 

The structure of the mathematical framework used is shown in Figure 6, panel A in the 

main text. Each age class is split into compartments (depicted by the figurines in the chart) 

according to their infectious, clinical and immunological statuses. Susceptible individuals (in 

yellow) can be infected if exposed to the SARS-CoV-2 by infected individuals (in pink) in the 

community (note that aged care facilities are not included). A fraction of the infected individuals 

develop a critical COVID-19 form, defined as requiring critical care and/or leading to hospital 

death (for simplicity, only patients admitted in critical care are depicted on the flowchart). 

Vaccination is implemented following the VAC-SI time series (data from Santé Publique France) 

and assumed to reduce the probability of three events, namely being infected if exposed, 

transmitting the virus if infected and developing critical complications if infected. Additionally, 

we assume that all individuals having recovered from a post-vaccine infection are immunized, 

contrary to unvaccinated individuals a fraction of which can become infected again (9). Formal 

and parameterization details are provided in (10), the system of which was updated according to 

the flowchart in Figure 6, panel A. 

The COVIDSIM Framework 

The main structure of COVIDSIM has been described in details in an earlier study (10). 

In short, the underlying model is structured in discrete time and uses COVID-19 critical 

care unit (CCU) incidence and prevalence data, as well as mortality data, to estimate key 

parameters of the epidemic in France. Individuals can move between compartments that var.y in 

terms of infectivity (Figure 6, panel A in the main text). The transition between compartments 

depends on the time spent in each compartment meaning that the model is non-Markovian (i.e., it 

captures ‘memory’ effects). 

For simplicity, the transmission model is not stratified by age. However, the probability 

of developing critical forms, being admitted to critical care, and dying from COVID-19 is age-

stratified according to published data (11). In general, the model parameters correspond to the 

French epidemic: their initial values are derived from literature data, technical reports or 

preliminary work, and are then regularly adjusted to reflect hospital dynamics (12). 
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Vaccination follows the French national campaign data (VAC-SI data from Santé 

publique France, available at https://www.data.gouv.fr) with simplifying assumptions. In 

particular, we assume that all vaccines act as a 1-dose vaccine, using the date of the second dose 

as the date of vaccination. The proportion of people already infected is the result of the model’s 

reconstruction of the epidemic. 

The level of protection of the hosts depends on the type of protection. Natural post-

infection is assumed to confer full protection to 85% of the individual, the 15% others remaining 

immunologically naïve. For vaccine immunity, we distinguish between different types of 

protection. In the most optimistic scenarios, we assume protection of 80% against infection and 

of 95% against the occurrence of severe forms if infected. Furthermore, based on our earlier 

investigations of the French epidemic (M.T. Sofonea et al., unpub. data, https://osf.io/6ebxu), we 

assume that the drop in infectiousness in so-called breakthrough infections in vaccinated 

individuals is 50%. 

Regarding the Omicron wave more specifically, our biologic knowledge improved over 

the duration of this study. The first modeling work was performed on December 22, 2021, at a 

time when the vaccine evasion and severity properties of Omicron were poorly known. The 

second modeling work was performed on 17 March 2022 and we were able to lean on more 

detailed data regarding the differences between Delta and Omicron in terms of severity (13) and 

vaccine protection (14). The assumptions made in these two works a further described below. 

Importantly, given the timescales considered, we neglect immune waning in the model, 

which means that on a long time scale our estimates could be over-optimistic. We also do not 

include seasonal variations, which have been shown to explain approx. 20% of the variance in 

reproduction number Rt (15). 

Late 2021 Scenarios: The BA.1 Wave 

The goal of this first model, which was performed on December 22, 2021, was to explore 

the impact of the Omicron variant on national CCU activity. This model was not intended to 

predict the future but rather to generate trends under assumptions that are arbitrarily optimistic 

for the most part. In particular, we made the following assumptions: 
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• The set of people vaccinated is homogeneous (e.g., no stratification according to the 

number of doses), which can be interpreted as assuming that the 3rd dose is 

rapidly generalized to the whole population. 

• There is no decrease in immune protection, i.e., waning, over time. 

• The proportion of previously infected people that Omicron can reinfect is identical 

to that of Delta (i.e., 15% [9]). 

• The generation time (number of days between the moment a person is infected and 

the moment he/she infects another person) is the same for all the variants. 

• The duration of stay in critical care remains unchanged. 

• There are no ’New Year’s Eve’, ’holiday’, ’back-to-school’ or meteorological 

effects on the epidemic spread. 

• The epidemic reproduction number (Rt) grows from 1.08 on December 23, 2021, to 

1.25 on December 28, and to 1.5 on January 7, 2022, which corresponds to a 10% 

decrease in the reproduction number at the peak compared to what would be 

expected by extrapolating the estimated Omicron growth from the screening data 

at the time. 

• From 15 January onward, a slowdown in the epidemic occurs due to public health 

interventions, spontaneous behavioral changes, and/or natural saturation related to 

spatial structure with a drop in Rt to 0.95. 

In this model, we also incorporated the growth advantage of Omicron/BA.1 versus Delta 

and the estimated frequency of Omicron/BA.1 in the population estimated from the variant-

specific screening test data (Figure 2, panel C in the main text). Since COVIDSIM is a single-

strain model, the replacement of Delta by Omicron was modeled by adjusting the transmission 

rate, immune protection, and severity parameters as a function of the increase in the proportion 

of Omicron infections. 

We then simulated two scenarios that differed in their assumptions regarding the 

differences between Omicron and Delta in terms of vaccine protection and virulence: 
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1. An “optimistic” scenario, with a 3-fold reduction in the probability of developing a 

critical form compared to Delta, a 75% vaccine protection against infection, and 

95% protection against critical forms (therefore, an excellent effect of the 3rd 

dose). 

2. A “pessimistic” scenario, where the probability of developing a critical form was 

only divided by 2 compared to Delta, and where the vaccine protection was only 

40% against infection and 80% against critical forms. 

Most of the assumptions made here, e.g., that on January 15, 2022, the Omicron epidemic 

would be decreasing, were rather optimistic. Therefore, the goal of these scenarios was to 

provide a lower bound. In other words, we wanted to estimate the minimal consequences on 

CCU of the Omicron variant wave. 

The results of the model are shown in Appendix Figure 4. 

2022 Scenarios: The BA.2 Wave 

Detailed data about the Omicron/BA.1 was rapidly available and allowed us to carefully 

parameterize our COVIDSIM model. In particular, based on this new severity and vaccine 

protection data, we could assume a 3.2 reduction in infection severity for BA.1 or BA.2 with 

respect to Delta (13), and a 75% protection against infection, and a 95% protection against 

severe infection forms for vaccinated individuals with 2 doses and a booster (14). 

Furthermore, epidemiologic data revealed that the serial interval, i.e., the distribution of 

the number of days between two infections (a proxy for the generation time) was lower for 

Omicron/BA.2 than for BA.1 (Figure 13 in [16]). This updated information was included in our 

second model. 

As in the first model, we incorporated the frequency time series and growth advantage of 

BA.2 versus BA.1 estimated from the sequencing data (Figure 4, panel B in the main text) into 

the model. 

Our analysis of the BA.2 wave included two steps: 

First, from the French hospital admission data (available at 

https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19), 

we estimated the temporal reproduction number (Rt) of the epidemic using the EpiEstim package 
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in R (6). The estimated value for March 1, 2021, was R2022–03–01 = 0.83. We then compared 

this reference number to the Rt values predicted from our model based on the frequency and 

growth advantage of the Omicron variant. The results are shown in Figure 6, panel B. 

Second, we explored two alternative scenarios over a medium time scale by varying the 

intensity of the control over the epidemic: 

1. In an optimistic scenario, the control was assumed to remain strong and the Rt 

peaked at a value of 1.1. 

2. In the pessimistic scenario, control measured were assumed to be strongly 

alleviated leading to an increase of Rt to 1.6. 

As in the first models, these scenarios are not intended to predict the future but to explore 

an upper boundary regarding the potential consequences of an Omicron/BA.2 wave in France. 
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Appendix 1 Table 1. Type II Anova model output for the linear model analyzing variations in Ct values* 
Variable Sum Sq Df F value 
age 14429 1 1290.9 
location_sampling 114 1 10.2 
date 3670 1 328.3 
region2 40363 12 300.9 
variant 5084 3 151.6 
date:region 6877 12 51.3 
Residuals 1526899 136605  
*<0.001 indicates significance values lower than 0.001. 

 
 
 
 
 
Appendix 1 Table 2. Output of the linear model analyzing variations in Ct values* 
Dependent variable Ct 
age −0.329*** 
 (0.009) 
location_sampling:hospital −0.175*** 
 (0.055) 
date_scale 0.284*** 
 (0.022) 
variant:A0B9C0D0 0.304*** 
 (0.087) 
variant:A0B9C1D0 −0.746*** 
 (0.036) 
variant:A0B9C1D1 −0.084 
 (0.273) 
region:Auvergne-Rhône-Alpes −0.375** 
 (0.160) 
region:Bourgogne-Franche-Comté −1.066*** 
 (0.060) 
region:Bretagne 0.424*** 
 (0.059) 
region:Centre-Val de Loire 0.620*** 
 (0.052) 
region:Corse −0.852*** 
 (0.050) 
region:Grand Est −1.289*** 
 (0.051) 
region:Hauts-de-France −0.943*** 
 (0.034) 
region:Normandie 0.161*** 
 (0.035) 
region:Nouvelle-Aquitaine −1.026*** 
 (0.042) 
region:Occitanie −0.648*** 
 (0.047) 
region:Pays de la Loire −0.436*** 
 (0.111) 

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34103391&dopt=Abstract
https://doi.org/10.1073/pnas.2019284118
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Dependent variable Ct 
region:Provence-Alpes-Côte d’Azur −0.452*** 

(0.033) 
date*region:Auvergne-Rhône-Alpes −0.303* 
 (0.158) 
date*region:Bourgogne-Franche-Comté −0.338*** 
 (0.060) 
date*region:Bretagne 0.647*** 
 (0.051) 
date*region:Centre-Val de Loire 0.258*** 
 (0.051) 
date*region:Corse 0.126*** 
 (0.047) 
date*region:Grand Est −0.466*** 
 (0.056) 
date*region:Hauts-de-France −0.321*** 
 (0.033) 
date*region:Normandie −0.048 
 (0.036) 
date*region:Nouvelle-Aquitaine −0.329*** 
 (0.043) 
date*region:Occitanie −0.243*** 
 (0.046) 
date*region:Pays de la Loire −0.626*** 
 (0.107) 
date*region:Provence-Alpes-Côte d’Azur −0.102*** 
 (0.033) 
Constant 22.669*** 
 (0.025) 
Observations 136,636 
R2 0.046 
Adjusted R2 0.045 
Residual Std. Error 3.343 (df = 136605) 
F Statistic 217.335*** (df = 30; 136605) 
*For each covariate, we show the estimated value of the effect and its standard deviation in parentheses. Significance level are shown using the 
following code: *p < 0.1, **p < 0.05 and ***p < 0.01. The table was formatted with the stargazer R package. 
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Appendix 1 Figure 1. Variant-specific screening test incidence data per French region. The color 

indicates the test result. Regions with too few tests are pooled in the “other” category. Notice that the 

epidemic was declining until mid-October 2021. Furthermore, the proportion of A0B0C0 tests varies 

across regions. 
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Appendix 1 Figure 2. Variant-specific screening test incidence data per French region for the ID 

solutions Revolution test. The color indicates the test result. Regions with too few tests are pooled in the 

“other” category. 
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Appendix 1 Figure 3. Lineage-specific incidence data per French region using whole genome 

sequencing. Samples with missing regions are in the “NA” category. 

 



 

Page 15 of 15 

Appendix 1 Figure 4. Epidemiologic modeling of scenarios for French national critical care unit (CCU) 

occupancy from December 2021 to Mid-March 22 with different Omicron virulence and immune evasion 

properties. The vertical blue line indicates the day the simulations were performed (22 Dec 2021), using 

solely epidemiologic, hospital, and virological data available to that date. In particular, the dark blue dots 

indicate the nationwide number critical care beds occupied by COVID-19 patients included for the model 

inference. The yellow vertical bar shows the date the figure was made. The red circles correspond to the 

data observed after the computation of the projections (data from Santé publique France). The shaded 

envelope the 95% range of the optimistic (green) and pessimistic (blue) scenarios according to the 

estimates available on Dec 22 2021. As expected, the model captures the CCU dynamics during the first 

2 weeks. The underestimation of the CCU occupancy in mid-Jan is related to the (overoptimistic) 

assumption that the Delta epidemic was under control when the model was made. This led to a merging 

between the Delta and the Omicron/BA.1 epidemic peaks in CCU on January 24, 2022. The ‘optimistic’ 

scenario (with low Omicron virulence and high vaccine protection) provided an accurate lower boundary 

for CCU occupancy until the end of January 2022. See the main text and the supplementary methods for 

more details about the model and its assumptions.  
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