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Appendix 

Part I: eBird dataset and wildbird species selection 

Taiwan, on the East Asian route of bird migration, launched the eBird Taiwan program in 

2015 and has since accumulated over 4,800 users by February 2022, who have contributed stable 

bird sighting checklists since 2015. After removing repeated checklists, a total of 336,154 

checklists with 3,778,382 numbers of wild bird species recorded from each checklist were found 

in Taiwan the ebird dataset between January 2015 and June 2020, Multiple observations of the 

same birds can happen either because several observers travelled together or because they came 

independently to the same site on the same day, both situations creating pseudo-replication. 

Therefore, we only consider the presence or absence of wild bird species observed here. 

To avoid reporting bias commonly found from citizen science dataset, we filtered the 

dataset with the three different criteria to obtain high-quality checklists comparable in amounts 

of efforts. The criteria include: (i) the traveling distance was less than 2 kilometers, otherwise 

they may not represent the local bird composition around the reported GPS location (1), (ii) the 

observation area was less than 100 hectares to ensure the identified bird species fell into 

3km×3km grids, and (iii) the duration of continuous observation was limited to <240 minutes 
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since the duration exceed this criterion tends to correlate with particular bird sighting activity, 

such as Taiwan New Year bird count event (2). We didn’t restrict the checklists based on the 

sampling protocol of the observers used since we are trying to capture all bird sighting activities 

regardless of whether the observers would record all species or target only specific bird species. 

After data filtering, we obtained the final dataset used for the analysis, which consisted of 

2,366,327 records of total numbers of species, covering 735 species, from 3080 observers. 

Wildbird species selection 

Before constructing the wild bird distribution map, the initial step is the selection of wild 

bird species relevant for the introduction of either HPAI or LPAI into the poultry farm. The bird 

species which show passage or regularly occurring breeding and wintering with preference to 

areas in Taiwan, and passing once or twice a year, may potentially act as a reservoir for LPAI, 

and will thus be considered for selection. The final inclusion criteria of bird species was based on 

either the top 20% abundancy by ranking the counts from the checklists of the observers (3) or 

the influenza virus isolation records from 3 databases: Influenza Virus Database-NCBI 

(https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi), EMPRES-I 

(https://empres-i.apps.fao.org/) and Influenza Research Database (IRD) 

(https://www.fludb.org/brc/home.spg?decorator=influenza) before the date of 12/03/2020. In 

total, 68 species of wild birds were included in this study, including 22 species selected which 

are ranked on the top 20% observations with a minimum of >100,000 being defined as 

“substantially” abundant. Appendix 2 Table 1 (https://wwwnc.cdc.gov/EID/article/29/1/22-0659-

App2.pdf) summarizes the complete list of bird species with their scientific name and common 

names under international taxonomy based on the second edition of the Avifauna of Taiwan or 

Avibase (https://avibase.bsc-eoc.org/avibase.jsp). 
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Part II: Estimating the occupancy risk map 

Variable selection 

The main difficulty in building a universally valid regression is that the presence (or 

absence) of bird species involves many variables (including land-related factors and 

environmental variables). It is challenging to obtain a unified explanation about the model 

structure. To estimate a risk map (occupancy probability), a variable selection procedure, called 

the elastic net method, were used for screening significant variables, including bird species and 

environmental factors. The elastic net method is a compromise between ridge regression and 

Lasso (4,5). 

Defining the resolution: 3km×3km grids 

Let Taiwan be divided into a set of 3km×3 km grids, each with an area equal to 9 km2, 

with four sides parallel to the Earth’s longitudes and latitudes. This partition gives 4,762 grids 

covering the entire map of Taiwan including the coastline. Let the squares be denoted as 

𝐴𝐴1∗ ,𝐴𝐴2∗ , … ,𝐴𝐴𝑁𝑁∗
∗  (N*=4,762). Because not all {𝐴𝐴𝑖𝑖∗}𝑖𝑖=1𝑁𝑁∗ (denoted as 𝒜𝒜∗) include both bird 

observations and poultry farms, let 𝒜𝒜 = {𝐴𝐴𝑖𝑖}𝑖𝑖=1𝑁𝑁  denote a subset of {𝐴𝐴𝑖𝑖∗}𝑖𝑖=1𝑁𝑁∗ , where 𝒜𝒜 includes 

only those with both farms and birds observation records (N=1,073). Hereafter we call 𝒜𝒜 the 

matrix of grids with bird observations. Note that the grids in 𝒜𝒜∗\𝒜𝒜 that contain no poultry 

farms are the ones located at or near elevated mountain areas. Let 𝑦𝑦𝑖𝑖,𝑘𝑘∗ be the number of birds of 

species 𝑘𝑘 reported in the i-th grid; 𝑦𝑦𝑖𝑖,𝑘𝑘 = 𝟏𝟏�𝑦𝑦𝑖𝑖,𝑘𝑘∗ ≥ 1� is the indicator of whether there is any 

observation of k-species in that i-th grid; k=1,…,K with K being the total number of species. 

Further, let 𝑡𝑡𝑖𝑖,𝑘𝑘,𝑠𝑠be the value of the s-th variable for temporal, terrestrial, and environmental 

factors. 
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Modeling the occupancy 

For species k, we first estimate the probability of its occurrence based on the presence or 

absence of other species as explanatory variables. This probability, denoted U and interpreted as 

a propensity score, is used as the “matching variable” in the following text. To model outbreaks 

in grids containing a certain number of poultry farms, the presence or absence of species k was 

used as the primary explanatory variable when the corresponding propensity scores U were 

matched. Therefore, it is still necessary to estimate the probability of occurrence of each species 

of bird in each grid based on a logistic autoregressive model to present an overall risk map. 

Notations and model description 

For grid “i” and for bird species “k”, Yi,k is the indicator variable of existence of species 

“k”, and Yi,-k is the indicator of all other species than species k. A natural conclusion is: the 

existence of species k depends on all the other species; and thus Yi,-k is a (K-1)-dimensional 

vector. Besides, Ti,k is the vector-valued variable representing all other variables (including the 

environmental data) except for bird species. Explicit modeling of spatial correlation between Y 

and the other Ts is implemented through the variable Y-i,k , which is also an indicator variable of 

observing species k in all adjacent grids using Queen’s contiguity-based neighbors (6), that is 

Y−i,k =1 (1), where A is the event of ∑ Yi,k ≥ 1{−𝑖𝑖}  when summed around grid “i”, denoted by 

the set {−𝑖𝑖}. 

The ZIP model estimates the probability of bird occupancy in a grid that accommodates 

both structural zeros (species never appear in the grid) and random zeros: 

log(λi,k) = β0 + Yi,−k′β + Ti,k′γ + φY−i,k, (A1) 

log � αi,k
1−αi,k

� = θ0 + Yi,−k′ν. (A2) 
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Estimating occupancy probabilities using autoregressive logistic model 

The principle of incorporating spatial autocorrelation is to consider the correlation with 

adjacent grids. Let 𝑃𝑃(𝑌𝑌𝑖𝑖,𝑘𝑘 = 1|Yi,−k, Ti,k, Y−i,k) be the occupancy probability given the “status” of 

the adjacent grids and the other land-cover and environmental variables. Explicit modeling of 

spatial correlation between Y and the other T is implemented through the variable Y-i,k which is 

an indicator of observing species k in all adjacent grids (using Queen’s contiguity-based 

neighbors). 

log �
P�Yi,k = 1�Yi,−k, Ti,k, Y−i,k�

1−P�Yi,k = 1�Yi,−k, Ti,k, Y−i,k�
� = 𝛽𝛽0 + Yi,−k′β + Ti,k′γ + φY−i,k (A3) 

The occupancy probability is estimated through a ZIP model by summing the 

probabilities of nonzero terms:  

P�𝑦𝑦𝑖𝑖,𝑘𝑘 = 0� = �1 − 𝛼𝛼𝑖𝑖,𝑘𝑘� + 𝛼𝛼𝑖𝑖,𝑘𝑘𝑒𝑒−𝜆𝜆𝑖𝑖,𝑘𝑘 (A4) 

In (A3), the advantage of using the indicator metric Yi,−k to model occupancy is that it 

avoids possible biases based on intrinsic properties of the eBird data, which can arise when 

reporting the number of species observed, but less often happens when only occupancy "status" 

is adopted. However, reducing bias inevitably leads to a loss of efficiency in statistical 

estimation. In the event the ZIP model is not suitable for model fitting, the zero-inflated negative 

binomial (ZINB) model can be used instead (7). 

Propensity score and matched-pair design 

The propensity score (U) corresponding to an indicator variable Z, which is random but 

dependent on a set of covariates, is the (estimated) probability of being equal to 1 for Z. To the 

purpose of adjustment for multiple explanatory variables (denoted by X) in this study, we 

consider X to include the indicators of observing species other than bird species k, as well as 
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many other variables. After the adjustment (for the propensity score), the risk factors are re-

assessed for their association with the outcome variable (Y) by matching on the propensity score 

(8). The remaining question is: why use propensity score matching? First, the variable number of 

bird species can be large, making it impractical to report the risk of individual bird species one-

by-one. Because of this concern, we consider the approach of matched-pair design so that the 

propensity scores of each species relative to all other species are matched. In addition, through 

this setting, the adjustment of environmental factors can also be achieved. 

How to construct the case-control set 

Among the N=1,073 grids where bird observations were reported, there are D=296 grids 

which contains at least 1 outbreak. We call the grid in D a “case”, and for the other C=N-D=777 

grids where no outbreak was reported, we call them “controls”. In the sequel, we denote SD as 

the set of “case” grids, and SC as the set of “control” grids. Since every case can have multiple 

matched controls, it is possible to consider a resampling scheme from the matched control set 

and compute the McNemar statistic for each resampling. 

McNemar’s matched-pair association test and Bootstrapping 

For a cell in SD, and according to the propensity of each bird species estimated in the 

aforementioned grid, we use Ud to represent the potential of this grid according to a certain 

ordering method, d=1,..,,D. We look for matched control for each case grid in the following 

manner: Let Uc represent the propensity of the bird species calculated by the grid in the control 

set SC, then Mc(d) =(Pm,l,Pm,u), where Pm,l and Pm,u are stated in the “Materials and Methods” 

Section. 

In the Appendix Table, let 𝜗𝜗𝑑𝑑
(𝑘𝑘) = 1 if there is an observation record of the k-th bird 

species in at least one grid in SD; otherwise 𝜗𝜗𝑑𝑑
(𝑘𝑘) = 0. On the other hand, for the control grid 
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randomly selected out of the corresponding SC subset Mc(d), if this grid has an observation record 

of the k-th species, then 𝜗𝜗𝑐𝑐(𝑑𝑑)
(𝑘𝑘) = 1; otherwise 𝜗𝜗𝑐𝑐(𝑑𝑑)

(𝑘𝑘) = 0。 

Appendix 1 Table. Forming McNemar chi-square tests from a matched-pair 2 by 2 table. 

Condition (i) ➔ 

Condition (ii) 

A cell randomly selected from Mc(d) has species k ? 

Yes No 

Cell d in SD has 

species k 

Yes 𝜗𝜗𝑑𝑑
(𝑘𝑘) × 𝜗𝜗𝑐𝑐(𝑑𝑑)

(𝑘𝑘)  𝜗𝜗𝑑𝑑
(𝑘𝑘) × (1 − 𝜗𝜗𝑐𝑐(𝑑𝑑)

(𝑘𝑘) ) 

No (1 − 𝜗𝜗𝑑𝑑
(𝑘𝑘)) × 𝜗𝜗𝑐𝑐(𝑑𝑑)

(𝑘𝑘)  (1 − 𝜗𝜗𝑑𝑑
(𝑘𝑘)) × (1 − 𝜗𝜗𝑐𝑐(𝑑𝑑)

(𝑘𝑘) ) 

In these four yes-no cells, only one of them equals to 1, the other three equal to 0. Here a 

“one” represents “one matched-pair”. Taking the summation over d=1,…,D, we obtain the total 

number of discordant pairs. Further, let α(𝑘𝑘) be the number of pairs that the case grid has 

species-k but the control-grid does not; 

α(𝑘𝑘) = ∑ 𝜗𝜗𝑑𝑑
(𝑘𝑘) × (1 − 𝜗𝜗𝑐𝑐(𝑑𝑑)

(𝑘𝑘) )𝐷𝐷
𝑑𝑑=1 , β(𝑘𝑘) = ∑ (1 − 𝜗𝜗𝑑𝑑

(𝑘𝑘)) × 𝜗𝜗𝑐𝑐(𝑑𝑑)
(𝑘𝑘)𝐷𝐷

𝑑𝑑=1 . (A5) 

Conversely, β(𝑘𝑘) is the number of pairs that the case-grid has no species-k but the 

control-grid does have. Because the random sampling is implemented on Mc(d), a subset of SC, 

the bootstrapping suggests that this random sampling can be repeated B times for a large “B” (9). 

If, temporarily, the number of poultry farm in the cells are not taken into account (but actually 

the number itself is a risk factor of the outbreak indicator of that cell), denote α𝑏𝑏
(𝑘𝑘) and β𝑏𝑏

(𝑘𝑘) to 

be the numbers of discordant pairs with conditions (i) and (ii) stated above for species k, and at 

the b-th resampling. Let 𝜒𝜒𝑏𝑏
(𝑘𝑘) be the realization of McNemar statistic calculated at the b-th 

resampling: 

𝜒𝜒𝑏𝑏
(𝑘𝑘) = (|α𝑏𝑏

(𝑘𝑘)−β𝑏𝑏
(𝑘𝑘)|−1)2

α𝑏𝑏
(𝑘𝑘)+β𝑏𝑏

(𝑘𝑘) , b=1,2,…,B (A6) 

The McNemar statistic in (A6) only provides a measure of significance, so we need to 

further consider the issue of positive or negative association. 
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Let sign(α𝑏𝑏
(𝑘𝑘) − β𝑏𝑏

(𝑘𝑘)) denote the indicator of positive or negative association between the 

k-th species and the outbreak event. Using 1{α𝑏𝑏
(𝑘𝑘)>β𝑏𝑏

(𝑘𝑘)} and 1{α𝑏𝑏
(𝑘𝑘)≤β𝑏𝑏

(𝑘𝑘)} to represent the indicator 

of positive or negative association, respectively, in the b-th replication of the bootstrapping 

procedure, we have (for b=1 to B): 

𝑝𝑝(𝑘𝑘) = 1
𝐵𝐵
∑ 1{α𝑏𝑏

(𝑘𝑘)>β𝑏𝑏
(𝑘𝑘)}

𝐵𝐵
𝑏𝑏=1 , 𝑞𝑞(𝑘𝑘) = 1

𝐵𝐵
∑ 1{α𝑏𝑏

(𝑘𝑘)≤β𝑏𝑏
(𝑘𝑘)}

𝐵𝐵
𝑏𝑏=1 = 1 − 𝑝𝑝(𝑘𝑘). (A7) 

The quantities 𝑝𝑝(𝑘𝑘) and 𝑞𝑞(𝑘𝑘) measure the tendency of positive and negative associations, 

respectively, using the resampling procedure. 

Risk map of AIV introduced into poultry farm by wild birds 

After matched-pair McNemar analysis, only the bird species with positive association 

were used to depict a risk map of AIV introduced into poultry farms by wild birds. The risk, 

defined as an infection probability (Rj), of grid j can be estimated by an additive-multiplicative 

(AM) risk model through the decomposition: 

R�𝑗𝑗=Pr(appearance of birds species)* 

Pr(introduction of AIV to poultry in grid j|appearance of bird species)* 

Pr{proportion of poultry farms in area in grid j}* 

Pr{a poultry farm infected by HPAIV} (1) The first two terms are estimated, joined by 

∑ 𝑆𝑆𝑘𝑘𝑘𝑘 𝐼𝐼𝑗𝑗𝑗𝑗
𝐾𝐾×𝐵𝐵

, where the quantities {S𝑘𝑘} are the numbers of positively significant association (for 

species k) in the “B” bootstrapped re-samplings; obviously, 𝑆𝑆𝑘𝑘
𝐵𝐵

 offers a bootstrap estimate for the 

“gravity level” of significance, and {𝐼𝐼𝑗𝑗𝑗𝑗} are the propensity scores estimated for species k. Let Aj 

be the number of outbreak poultry farms, Dj be the total number of poultry farms and Fj denotes 

the total area (in km2) of poultry farms potentially to be infected in grid j. Therefore, the 
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probability of wild birds introducing AIV into poultry farms in grid j is estimated through the 

additive model as: 

R�𝑗𝑗 =
∑ 𝑆𝑆𝑘𝑘𝑘𝑘 𝐼𝐼𝑗𝑗𝑗𝑗
𝐾𝐾×𝐵𝐵

 ×  𝐴𝐴𝑗𝑗
𝐷𝐷𝑗𝑗

 ×  𝐹𝐹𝑗𝑗
9 𝑘𝑘𝑘𝑘2  

This (Aj /Dj)×(Fj /9 km2) can be treated as the proportion (probability) that a randomly 

selected poultry farm is an infected one in that grid. 
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