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Global Estimate of Human Brucellosis 
Incidence 

Appendix 

Methods 

Data Collection 

Human Brucellosis Data 

The WOAH is the primary intergovernmental organization that collects and disseminates 

human and animal brucellosis data, aggregating and reporting new brucellosis cases via an online 

database called the World Animal Health Information System (WAHIS) (1,2). Established in 

2005, the WAHIS aggregates self-reported information from the WOAH’s 182 permanent 

member countries (2). Every year, the WOAH solicits an annual report from each of its member 

countries. This report nominally includes an update on the presence or absence of each zoonotic 

Brucella spp. in livestock and the total number of new human cases (2). As the zoonosis section 

of the WOAH annual reports has not yet (December 2022) been integrated into the publicly 

available WAHIS, we contacted the WOAH’s World Animal Health Information and Analysis 

Department for access to the dataset. They provided case counts of newly diagnosed human 

brucellosis (i.e., annual cumulative incidence) by year, country, and disease status in their annual 

reports (2). It is essential to mention that these reports are not mandatory, and the WOAH does 

not certify that reported cases are accurately diagnosed. These reports also do not specify which 

diagnostic tests or clinical criteria were used to diagnose or confirm disease, nor do they specify 

the Brucella spp. infecting humans (e.g., B. abortus, B. melitensis, and/or B. suis) (2). These 

omissions reduce the usefulness of the data for establishing adequate national policies to control 

the disease. Without knowledge of the diagnostic techniques or the surveillance and reporting 

systems, we could not confirm the accuracy of the number of newly diagnosed infections in the 

database. For this reason, we refer to the reported numbers as “reported case counts” (RCC). 
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Animal Brucellosis Data 

One of the main differences between human and animal data availability is that animal 

data reported by WOAH-WAHIS contains information for each zoonotic species of Brucella, 

and the extent of reporting is more complete than for humans (2). However, livestock data are 

only reported as present or absent (as opposed to an RCC). Similarly, to the human data, the 

diagnostic methods are not provided by country, resulting in additional uncertainty. 

Population Data 

To identify at-risk populations, we extracted annual human population counts and rural 

population percentages for each of the 182 member countries from the World Bank databank (3). 

Statistical Analysis of Input Parameters 

The completeness and representativeness of human RCCs and livestock disease data were 

subject to statistical and graphical analysis using GraphPad Prism 9. The full methods and 

analysis of RCCs, found in Laine, et al. 2022 (4), were applied to the livestock dataset to assess 

information completeness. 

Specific Modeling Procedures 

Three separate models were then employed to estimate the global and annual incidence of 

human brucellosis. These included weighted average interpolation, bootstrap resampling, and a 

Bayesian hierarchical model implemented using R software. Heat maps displaying the magnitude 

of risk worldwide in terms of cases per million at risk were developed and visualized using the 

geographic information system (GIS) software ArcMap. Country-level information was 

intentionally omitted from the estimated incidence results as the data can only be interpreted at 

the global and regional scale for two reasons: 1) in the weighted average interpolation model the 

exact country specific data are unreliable, because the RCCs used in this model are known to 

have several types of error (e.g., diagnostic and reporting) resulting in uncertainties. 

Additionally, the RCCs for countries that do not report a value were based on the average of 

regional countries that did. 2) The bootstrap and Bayesian hierarchical models imputed 

parameters from individual countries who reported RCCs to calculate an overall incidence for 

the region and world. 



 

Page 3 of 11 

Weighted Average Interpolation Model 

This model was used to: 1) estimate the average risk from the at-risk countries that 

provided RCCs within a region and was reapplied to the at-risk countries within the same region 

that did not report data to allow an overall risk assessment for the region, and 2) estimate 

individual country incidence based upon the determined risk multiplied against the respective 

populations at risk. The overall estimates were calculated as the sum of the incidence within each 

regional cohort (regional incidence) and the sum of the regions (global incidence). One of the 

restraints of this model is that the weighted average interpolation model does not provide 

confidence intervals due to direct calculation of incidence; therefore, a bootstrap resampling 

model was also used. 

Bootstrap Resampling Model 

This model was used to: 1) allow random sampling within a region to address the 

uncertainty within individual RCCs and 2) incorporate the variation in RCCs among the 

countries within a regional cohort providing a confidence interval. Specifically, this model 

randomly resamples risk values from countries that provide a RCC rate within a region and 

imputes these rates to at-risk countries within the same region that did not report an RCC value. 

The RCC value for these countries was imputed by multiplying the rate imputed for each non-

reporting country by the at-risk population. The overall estimates were calculated as the sum of 

the incidence within each regional cohort (regional incidence), and the sum of the regions (global 

incidence). One million iterations of this process were conducted to produce an uncertainty 

distribution with values for the mean, standard deviation, and median, as well as 2.5%, 25%, 

75%, and 97.5% quantiles. 

Bayesian Hierarchical Model 

This model was used to 1) use prior information within a region to better address 

variation in data and uncertainty among the RCCs introduced to the weighted average 

interpolation and Bootstrap models and 2) incorporate the variation in RCCs among the countries 

within a regional cohort to obtain confidence (or credible) intervals. Within each region r, r = 1, 

…, 4, the incidence rate in country j was denoted by p(j,r) and the number of individuals at risk 

was denoted by n(j,r). The RCC for a country j and region r that filed a report was denoted by 

y(j,r) and was assumed to follow a binomial distribution with infection probability p(j,r) and 
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denominator n(j,r). To predict cases in a country, say j*, from region r for which case counts 

were not reported, we assumed that p(j*,r) was drawn from a β distribution with parameters 

(K(r),π (r)), parameterized so that expected value and variance of p(j*,r) were π(r) and π(r)(1-

π(r))/(K(r) +1), respectively. The prior density assumed for K(r) was assumed to be proportional 

to a standard Cauchy density restricted to the positive real line, and a Beta(0.00024,1–0.00024) 

prior was assigned to π(r). The value of 0.00024 was chosen to match the empirical infection rate 

across all reporting countries. The Cauchy distribution was chosen as a prior for K(r) due to its 

heavy tails; the β distribution assigned to the π(r) values contained the equivalent of one 

individual’s outcome and so was not highly informative. Because of the relatively small number 

of reporting countries in Africa, and the similarity of the method-of-moments estimate of K(r) 

obtained from the Africa and Asia regions, a common value of K(r) was assumed for these two 

regions. Distinct values of π(r) were estimated for each region. 

The posterior distributions for p(j,r), K(r), and π(r) were estimated using a Markov chain 

Monte Carlo (MCMC) algorithm (5) based on the observed values of y(j,r) in reporting 

countries. After 50,000 burn-in iterations, one million sampled values were retained from this 

algorithm for posterior inference. The posterior-predictive distribution for counts in non-

reporting countries was estimated by sampling from the predictive distributions on p(j*,r) given 

posterior samples of K(r) and π(r). Predictive counts for non-reporting countries were then 

simulated from binomial distributions with parameters p(j*,r) and denominators equal to their at-

risk population. (In simulation code, a Poisson approximation to the binomial distribution was 

used to improve computational efficiency for large values of n(j,r)). Sensitivity analyses showed 

that nearly identical results were obtained if the prior on π(r) was changed to a Beta(0.5,0.5) 

density and the prior on K(r) was assumed to be proportional to either 1/(K+1) (improper) or 

1/(K^3+1). Like the bootstrap model, results are expressed in terms of mean, standard deviation, 

and median, as well as 2.5%, 25%, 75%, and 97.5% quantiles. 

Model Validation 

To determine whether each of the models accurately represents the behavior of the 

system, the output data from each model was compared to the information submitted by the 

region with the most complete reports for both humans and livestock (i.e., Europe). For this 
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validation, the average value estimated by each of the models was compared to the empirical 

human brucellosis RCC values provided by WOAH. 

Discussion 

Limitations 

It is essential to recognize that the RCCs are unlikely to accurately represent all the case 

counts owing to several problems in surveillance and reporting systems globally but heavily 

weighted to resource-limited settings. Other than misdiagnosis, multiple factors make brucellosis 

diagnostics and surveillance activities complex and challenging (6–9). For example, brucellosis 

can manifest differently between patients and varies between acute and chronic, as well as 

symptomatic and asymptomatic infection. In many instances, high cost often leads to diagnoses 

made on presumptive case definitions (10,11). Furthermore, the diverse range of tests available 

for laboratory diagnostics have different necessities, including distinctively equipped laboratories 

and data analysis requirements. Therefore, correctly identifying cases demands well-trained 

healthcare professionals with the appropriately equipped facilities to properly differentiate 

between the infectious agents and to identify co-infections (10,12,13). Critically, these 

considerations can often also lead to underdiagnosis. To curb the effects of underdiagnosis, a 

significant effort is required to develop local capacity and raise awareness of public health 

personnel to effectively identify the disease and provide effective treatment. 

In addition to problems caused by misdiagnosis and underdiagnosis, many countries fail 

to report brucellosis incidence data. For example, China routinely provided RCCs to WOAH 

until 2015 but has not reported them since. Nonetheless, scientific literature suggests that China 

has comparatively higher incidence rates (5,14). India lacks national reporting, even though 

scientific reports suggest high numbers of cases (15). Taken together, these countries constitute 

large proportions of Asian and World populations, and the information not being provided could 

potentially increase estimated annual case counts regionally and globally. 

Overall, we have identified information gaps (16), used innovative epidemiologic 

methods to fill the gaps, and provided evidence. Incorporating this new information with new 

evidence on the effectiveness of interventions (17) should lead to a better path in the future. Yet, 

as with any modeling paradigm, there are limitations. First, the nonparametric bootstrap may not 
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reflect all uncertainty in the data because it does not account for the binomial variation in the 

rates and unknown variation between regions. Additionally, there are not enough data to 

reasonably estimate the rates in Oceania, and the available data would seem to be 

unrepresentative because of the missing data (i.e., Australia and New Zealand are the only 

reporting countries, and they are unlikely to be representative of the others in the region due to 

their comparative population sizes). Furthermore, our model identifies only rural residents as at-

risk populations. Although urban populations can also be at risk from contact with small 

ruminants, consumption of purchased raw milk and milk products, and workers at slaughter 

facilities, the burden is primarily centered on rural inhabitants. Moreover, these estimates are 

very conservative due to underreporting cases, even in the countries that regularly report. 

This conservative estimation can be appreciated during resampling within the bootstrap 

and Bayesian paradigms, with a far right-hand skew of the resulting histograms (Figures 3, 4) 

being most likely due to the lack of surveillance rigor worldwide. Unfortunately, it appears that 

countries incurring the majority of the disease burden also have the weakest surveillance and 

control programs (16). This results in a shift of the estimates toward the underreporting 

countries. Therefore, the primary limitation with estimating the incidence of human brucellosis is 

the reliability of the input parameters, especially since human data are sparse, animal data are 

vague, and mis- and under-diagnosis information is nebulous. In the future, data robustness can 

be remedied but will require a concerted effort among members of the international community. 

Countries like Kenya have shown that prioritization and reallocation of resources toward 

surveillance and control have provided better information (16,18,19). 
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Appendix Figure (following pages). Analytical flowchart for the estimation of annual human brucellosis 

incidence. Ovals represent input data, squared boxes represent computed intermediate data, rounded 

boxes represent modeling processes, and starred boxes represent intermediate and final results. The 

flowchart is color-coded by model component: general processes applied to all models, in black; weighted 

average interpolation, in red; bootstrap resampling, in blue; hierarchical Bayes model, in green. 

MCMC, Markov chain Monte Carlo; RCC, reported case count. 
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