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In 1985, the orthobunyavirus Fort Sherman virus
(FSV) was discovered in a US soldier with acute 

febrile disease who was based in a jungle warfare 
training center in Panama (1). Two FSV strains were 
isolated from mosquitoes in Argentina in 1965 and 
1982 (2). FSV was found in healthy horses in Brazil 
in 2018, (2) and in horses in Argentina showing neu-
rologic and abortive disease in 2013 (3). Serologic 
analyses of horse-associated FSV strains have sug-
gested a broad vertebrate host range in peridomes-
tic animals; seroprevalence has ranged from 2.9% in 
goats to 22.0% in horses in Brazil (2) and 5.7% in hu-
mans in Argentina (4).

We describe a case of human FSV infection in a 
patient with febrile illness sampled in March 2020 in 
the city of Chiclayo in Lambayeque department on 
the northern coast of Peru (Figure 1). The patient was 
a 61-year-old man with no recent travel history and 
fever of 38°C. Results of diagnostic tests were nega-
tive, including dengue virus (DENV)–specific real-
time reverse transcription PCR (RT-PCR) and broadly 
reactive nested RT-PCRs targeting flaviviruses and 
alphaviruses. Expanded diagnostic investigation 
yielded a positive result for orthobunyaviruses us-
ing a broadly reactive RT-PCR (Appendix, https://
wwwnc.cdc.gov/EID/article/30/10/24-0124-App1.
pdf). We identified the virus as FSV by sequencing of 
the screening PCR amplicon (Appendix). We obtained 
complete coding sequences of all 3 genome segments 
by amplifying overlapping genome fragments us-
ing nested RT-PCR, followed by Sanger sequencing 
(Appendix). Virus isolation failed despite repeated 
attempts, potentially because of sample degradation 
and a relatively low viral load of 3.7 × 102 viral RNA 
copies/mL of blood quantified using published FSV-
specific real-time RT-PCR (2). 

To investigate the extent of FSV infection in 
Lambayeque, we examined all 582 available serum 
samples from febrile persons sent for diagnostics to 
the local reference laboratory from Peru’s Ministry 
of Health during 2020 using RT-PCR for orthobun-
yaviruses. Of the samples, 70.4% (410/582 [95% CI 
66.6–74.0]) tested positive for DENV, but no samples 
tested positive for FSV, other orthobunyaviruses, al-
phaviruses, or other flaviviruses (Appendix Table 3, 
Appendix Figure).

Fort Sherman virus (FSV) was isolated in Panama in 
1985 from a US soldier. We report a case of human FSV 
infection in a febrile patient from northern coastal Peru in 
2020. FSV infections spanning ≈35 years and a distance 
of 2,000 km warrant diagnostics, genomic surveillance, 
and investigation of transmission cycles.
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The genetic identity of the human-derived FSV 
strains from Panama and Peru was notable because 
those 2 strains were sampled over a distance of 
2,000 km and nearly 4 decades apart. Nucleotide 
distances of the complete coding sequences com-
pared with the prototypic FSV were 2.0% for large, 
2.3% for medium (M), and 1.0% for small gene se-
quences. Translated amino acid sequence distances 
were low at all coding sequences, ranging from 0 to 
1.5% (Appendix Table 4), which is compatible with 
strong purifying selection acting on arthropod-
borne viruses, such as FSV (5).

In phylogenetic reconstructions, the Peru FSV 
clustered with the Panama FSV prototype strain in 
all 3 viral genes. In the M gene–based phylogeny, the 
Panama and Peru FSV strains were monophyletic 
and nested in the Cache Valley virus (CVV) clade 
with robust bootstrap support (Figure 2). In contrast, 

mosquito- and horse-derived FSV strains from Ar-
gentina and Brazil differed from the FSV prototype in 
the phylogeny of their glycoprotein-encoding M gene 
(Figure 2). Phylogenetic inference of human-derived 
strains suggested an evolutionary origin of M genes 
involving a nonrecent reassortment event involving 
CVV (2). CVV frequently infect ruminants in North 
America, causing severe disease and congenital de-
fects (6). Febrile disease in CVV-infected humans has 
been reported sporadically (6). The range of poten-
tial vertebrate or invertebrate hosts in which FSV and 
CVV reassortment might have occurred is thus wide.

Orthobunyavirus reassortment predominantly 
involves the M segment that encodes proteins re-
sponsible for viral receptor binding, thus poten-
tially altering viral host range (7). Because CVV 
has been detected in several mosquito species (6), 
the human-derived FSV containing a CVV-like M 

Figure 1. Geographic distribution 
of CVV and both FSV strains 
along the North and South 
American continents in study 
of FSV infection, Peru, 2020. 
Additional information on the 
sequences used to build the 
figure is provided (Appendix 
Table 1, https://wwwnc.cdc.
gov/EID/article/30/10/24-0124-
App1.pdf). CVV, Cache Valley 
virus; FSV, Fort Sherman virus; 
L, large segment; M, medium 
segment; S, small segment.
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protein might have a relatively broad host range, 
potentially including mosquito species that en-
able urban transmission cycles. This possibility is 
worrying because the Lambayeque region is a hot 
spot for the Aedes spp. mosquito–borne DENV, and 
during the COVID-19 pandemic, vector control ac-
tivities were stopped (8). Although lack of another 
FSV-positive patient with febrile disease during 
2020 in Lambayeque refuted an FSV outbreak, fu-
ture outbreaks in humans cannot be excluded. Ge-
netic monitoring of FSV will be required given that 
even single amino acid exchanges might affect the 
arboviral host range, as was demonstrated by the 
E1-A226V exchange in the Chikungunya virus en-
velope coding sequence that dramatically enhanced 
infection of Aedes albopictus (9).

The lack of studies describing FSV in humans is 
intriguing. One explanation could be the insufficient 
diagnostic capacity in areas where FSV potentially 
circulates. Another reason could be that human FSV 
infections are rare, potentially because of strong pu-
rifying selection that hinders the virus’s adaptation 
to human hosts (10). Our data highlight infection of 
humans with FSV in 2 ecologically distinct settings 
(coastal desert in Peru and coastal forest in Panama; 
https://www.oneearth.org) ≈2,000 km and 35 years 
apart in Latin America. The transmission cycle of 
both the human- and horse-derived FSV strains needs 
to be elucidated to identify risk groups and design 
intervention strategies. FSV should be considered in 
the differential diagnosis of febrile disease in Latin 
America, ideally including the development of robust 
serologic tests.
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Renal abscesses are rare and often difficult to 
distinguish from malignant renal tumors. Re-

nal abscesses typically are caused by gram-neg-
ative bacteria, such as Escherichia coli and Proteus 
species, as well as gram-positive Staphylococcus 
aureus (1). Porphyromonas gingivalis, an anaerobic, 
gram-negative bacterium primarily associated with 
periodontal disease, is an uncommon cause of sys-
temic infections (2). We report a fatal case of renal  
abscess and sepsis caused by P. gingivalis in a man 
in Japan.

The patient was a 61-year-old man with a body 
mass index of 22.3 kg/m2 who had a history of hyper-
tension, hyperuricemia, dyslipidemia, and cerebral 
hemorrhage. However, he had no residual effects 
from the cerebral hemorrhage and worked without 
any problems. He was undergoing follow-up for an 
intraductal papillary mucinous tumor of the pan-
creatic duct in the internal medicine department at 
Ehime Prefectural Central Hospital in Matsuyama, 
Japan. One week before admission, he experienced a 
brief fever and gum pain. Three days before admis-
sion, routine imaging revealed a mass in his right 
kidney (Figure 1, panel A), leading to a referral to the 
urology department. 

At admission, the patient was in severe pain. 
A contrast-enhanced computed tomography (CT) 
scan of the abdomen revealed a subrenal capsular 
hematoma caused by tumor rupture (Figure 1, panel 
B). Spontaneous rupture of a renal tumor was diag-
nosed and considered a grade 1 renal injury. After 
examination, we admitted the patient for conserva-
tive therapy. We performed a follow-up contrast- 
enhanced CT scan of the abdomen a day after admis-
sion, which showed no changes in hematoma size or 
effusion progression (Figure 1, panel C). We contin-
ued conservative treatment, but 2 days after admis-
sion, the patient showed signs of poor oxygenation, 
tachycardia, and hypotension. On day 3 of admis-
sion, the patient’s respiratory function deteriorated, 
and he required intubation. 

During the patient’s hospitalization, no fever was 
observed. However, blood tests indicated an elevated 
inflammatory response. We suspected a hematoma 
infection, drew blood for cultures, and started the pa-
tient on meropenem. However, the patient’s general 
condition did not improve, and he died on the fourth 
day after admission. 

Two sets of blood cultures obtained before initiat-
ing antimicrobial drug therapy were both negative. A 
urine culture detected only the presence of strepto-
cocci. The family requested an autopsy to determine 
the cause of death. 

A 61-year-old man in Japan with abdominal pain was sus-
pected of having a renal tumor. Despite initial treatment, his 
condition rapidly deteriorated, leading to death. Postmortem 
examination revealed a renal abscess and sepsis caused 
by Porphyromonas gingivalis. This case underscores the 
need to consider atypical pathogens in renal masses.
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