
Neisseria gonorrhoeae infections cause substantial 
illness globally, and control is challenged by in-

creasing antimicrobial resistance. The World Health 
Organization (WHO) reported 82.4 million new 
N. gonorrhoeae infections worldwide among per-
sons 15–49 years of age (1). In the United States, an  

estimated 1.5 million new cases of gonorrhea are re-
ported each year (2).

Gonococcal urogenital tract infections can cause 
severe complications, especially in women, who are 
often asymptomatic and go undiagnosed. Untreat-
ed cervical infections can cause upper genital tract  
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The rapid emergence of antimicrobial-resistant strains 
of Neisseria gonorrhoeae threatens treatment options 
and control efforts. The Uniformed Services University 
Gonococcal Reference Laboratory and Repository of 
the Global Emerging Infections Surveillance Program 
receives isolates from several geographically distinct 
regions worldwide. We analyzed 962 isolates collected 
during 2014–2022 for genomic and phenotypic antimi-
crobial resistance. Resistance to antimicrobial drugs 
previously used for gonococcal infections was high, but 
of most concern were increases of resistance to cur-

rently used antibiotic drugs, such as extended-spectrum 
cephalosporins and the alternative antibiotic treatment 
gentamicin. The percentage of isolates with reduced 
susceptibility to ceftriaxone was 3.6%, to cefixime was 
2.5%, and to gentamicin was 15.0%. Although isolates 
were collected from populations of limited diversity, 706 
(73.4%) of isolates demonstrated novel multiantigen se-
quence types, and 225 (23.4%) had novel multilocus se-
quence types. Continued surveillance of N. gonorrhoeae 
is essential to monitoring the prevalence and spread of 
resistant organisms worldwide.
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disease, such as pelvic inflammatory disease, chronic 
pelvic pain, and ectopic pregnancy,  and also increases 
the risk for tubal infertility. Urethral infections in men 
can ascend to cause epididymitis or orchitis; howev-
er, unlike cervical infections, urethral infections are 
usually symptomatic. The resulting discharge and 
dysuria increase the likelihood that male patients will 
seek testing and treatment.

Effective infection control is challenged by un-
derdiagnosis of asymptomatic infections, lack of 
point-of-care diagnostics, and increasing persistent 
antimicrobial resistance. N. gonorrhoeae has devel-
oped resistance to all antibiotic drugs that have been 
used for routine treatment because of its ability to 
readily acquire genes through horizontal gene trans-
fer or spontaneous mutations. The prevalence of an-
timicrobial resistance (AMR) within N. gonorrhoeae 
strains has steadily increased across the antibiotic 
era, necessitating frequent changes in treatment rec-
ommendations. The initial emergence of high-level 
penicillin and tetracycline resistance was followed by 
the introduction of fluoroquinolones for gonorrhea 
treatment in the mid-1980s, which were subsequently 
removed from treatment in 2007 (3). Dual therapy us-
ing extended-spectrum cephalosporins (ESCs) and 
azithromycin then became the primary recommend-
ed therapy for a decade. Azithromycin was removed 
in 2021 because of increasing resistance, leaving only 
ESCs for first-line treatment of gonorrhea. Globally, 
ceftriaxone is the sole remaining primary therapy for 
first-line treatment of gonorrhea in most guidelines 
(4–6). However, isolates with reduced susceptibility 
to ceftriaxone have proliferated worldwide, and mul-
tidrug-resistant, ceftriaxone-resistant strains have 
been reported in several countries (7–10), threatening 
simple outpatient therapy.

Because of the threat of untreatable gonor-
rhea, N. gonorrhoeae is classified by the Centers 
for Disease Control and Prevention as an urgent 
threat (11) and by WHO as a high-priority patho-
gen (12) for which new treatments are critically 
needed. Global rates of N. gonorrhoeae infections 
have been reported since 1992 through the WHO 
Enhanced Gonococcal Antimicrobial Surveillance 
Programme (EGASP). Data for 2017–2018 from 
73 countries demonstrated resistance to ESCs of 
0%–22%, azithromycin resistance of 0%–60%, and 
ciprofloxacin resistance of 0%–100% (13). Although 
several countries report AMR data to the EGASP, 
N. gonorrhoeae surveillance data from many global 
regions, such as Central America, Eastern Europe, 
Southeast Asia, sub-Saharan Africa, and the East-
ern Mediterranean, remain scarce.

The Sexually Transmitted Infection (STI) Na-
tional Strategic Plan for the United States (2021–
2025) recognizes the need to improve STI prevention 
at the local, state, and federal levels. The plan also 
recommends that specific groups, such as the mili-
tary and fraternal organizations, include services 
that address men’s sexual health and their role in 
transmitting STIs (14). Military service members are 
at high risk for STI because of social demographics 
including age; however, factors such as increased 
alcohol consumption, diversification of sexual net-
works, and infrequent condom use also exacerbate 
risk in military populations (15). In addition, sexual 
assault, which carries an inherent risk for STI, has 
been reported in 1.0% of men and 4.9% of women in 
military service (16).

In alignment with the National Action Plan 
for Combating Antibiotic-Resistant Bacteria (14), 
and to monitor this urgent, ever-changing AMR 
threat, the Uniformed Services University (USU), 
in collaboration with the Armed Forces Health Sur-
veillance Division’s Global Emerging Infections 
Surveillance (GEIS) Branch, established the USU 
Gonococcal Reference Laboratory and Repository 
(GC Repository) within the USU Department of 
Microbiology and Immunology (Bethesda, Mary-
land, USA). This report analyzes trends in the sus-
ceptibility of N. gonorrhoeae isolates from different 
geographic regions to 8 different antibiotic drugs 
during 2014–2022 as part of the GEIS STI surveil-
lance program. We also report the distribution of 
key alleles on the basis of genomic analysis to help 
define the prevalence of specific AMR determinants 
in different geographic regions. The investigators 
have adhered to the policies for protection of hu-
man subjects as prescribed in AR 70-25.

Methods
The GEIS STI initiative was established in 2010 to 
improve the health of the US armed forces and sup-
port force health protection decision-making. The 
GC Repository was established in 2014 to serve as 
a central entity for confirmatory testing and both 
phenotypic and genotypic characterization (17–19). 
As part of the surveillance program, a proficiency 
testing program was also established for quality as-
surance of partner laboratory methods for N. gonor-
rhoeae AMR testing.

Sampling Methods
We collected samples from persons enrolled in clini-
cal care or public health surveillance activities dur-
ing 2014–2022, which included military populations,  
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civilians, and high-risk populations from 5 geograph-
ic regions. We gram-stained from urethral, vaginal, 
cervical, pharyngeal, or rectal swab samples, plated 
them on selective media such as modified Thayer-
Martin agar, and incubated for 24 hours at 37°C in 
5% CO2 or in a candle jar. We froze isolates of pre-
sumptive N. gonorrhoeae in 25% glycerol and tryptic 
soy broth and shipped to the GC Repository. We as-
sessed AMR using Etest (bioMérieux, https://www.
biomerieux.com) (Appendix, https://wwwnc.cdc.
gov/EID/article/30/14/24-0296-App1.pdf) and per-
formed agar dilution to confirm MICs for isolates 
with reduced susceptibility to azithromycin, ceftriax-
one, cefixime, and gentamicin.

Reference Laboratory Testing
As of December 2023, the GC Repository received a 
total of 1,244 presumptive isolates from 6 countries: 
Thailand (n = 557), the Philippines (n = 35), Ghana 
(n = 73), Peru (n = 237), Kenya (n = 211), and Georgia 
(n = 95). We confirmed isolates by culture on modi-
fied Thayer-Martin agar, Gram staining, oxidase test 
positivity, superoxol test positivity, and API NH bio-
chemical test (bioMérieux). We used detection of the 
porA pseudogene to resolve inconclusive API NH test 
results (Appendix). We determined MICs for all 962 
isolates (Appendix).

Whole-Genome Sequencing and Bioinformatic Analysis
We sent N. gonorrhoeae isolates to the Walter Reed 
Army Institute of Research’s Multidrug-Resistant Or-
ganism Repository and Surveillance Network (Silver 
Spring, Maryland, USA) for whole-genome sequenc-
ing (Appendix) and genotypic characterization. Mul-
tilocus sequence typing (MLST) was performed in sili-
co using the N. gonorrhoeae scheme curated by Maiden 
(20). We performed additional in silico molecular typ-
ing using N. gonorrhoeae multiantigen sequence typ-
ing (NG-MAST) and N. gonorrhoeae sequence typing 

for antimicrobial resistance (NG-STAR) with ngmas-
ter version 1.0.0 (21) (Appendix).

Results
Of the 1,244 frozen suspensions of presumptive N. 
gonorrhoeae from 5 geographic regions received by the 
GC Repository, 962 (77.3%) were confirmed as N. gon-
orrhoeae isolates. Among isolates for which the type of 
sample was recorded, most came from urethral swab 
samples taken from men. Limited, inconsistent demo-
graphic data were available to the partner laborato-
ries involved in public health surveillance.

Antimicrobial Susceptibility Testing
We compiled phenotypic AMR data for all 962 isolates 
(Table 1). Benzylpenicillin resistance was most com-
monly observed (917/962 [95.3%]), followed by tetra-
cycline (902/962 [93.7%]) and ciprofloxacin (882/962 
[91.7%]). Resistance to those antibiotic drugs varied 
among sites; ≈50% resistance to each of those antibiot-
ic drugs was observed in Georgia, whereas other sites 
exhibited up to 90% resistance. Elevated MICs (IR>1; 
R>2) to azithromycin was found in 10 isolates, 8 of 
which had azithromycin MICs of 1 and 1.5 μg/mL (2 
from Georgia, 2 from Peru, and 4 from Thailand); 2 
isolates had MICs >256 μg/mL (Kenya). Among iso-
lates from Kenya, 5 exhibited reduced susceptibility 
to the ESCs: 1 for cefixime, 2 for ceftriaxone, and 2 
for both cefixime and ceftriaxone. Similarly, 11 Geor-
gia isolates exhibited reduced susceptibility to ESCs. 
We observed that 84% (809/962) of the isolates were 
susceptible to gentamicin (S<4; IR = 8–16; R>32). Of 
the remaining isolates, 7 (0.7%) had MICs of 16 μg/
mL (4 from Peru, 2 from Georgia, and 1 from Ghana). 
All 962 isolates were susceptible to spectinomycin. 
Multidrug resistance was common among all inter-
national collection sites. The frequency of resistance 
to any 3 antibiotic drugs ranged from 11% (Ghana) to 
92% (Peru).
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Table 1. Summary of phenotypic antimicrobial resistance in study of common patterns and unique threats in antimicrobial resistance 
as demonstrated by global gonococcal surveillance* 

Region 
Isolates with reduced susceptibility or resistance, no. (%) 

Tetracycline Benzylpenicillin Ciprofloxacin Azithromycin Cefixime Ceftriaxone Gentamicin 
Thailand, n = 516 500 (96.9) 502 (97.3) 500 (97) 4 (0.77) 2 (0.4) 16 (3.1) 31 (6.0) 
Ghana, n = 19 19 (100) 19 (100) 17 (89.5) 0 1 (5.3) 0 7 (36.8) 
Peru, n = 208 195 (93.7) 205 (98.5) 186 (89.4) 2 (0.96) 7 (3.4) 3 (1.4) 63 (30.3) 
Nairobi, Kenya, n = 27 27 (100) 26 (96.3) 23 (85.1) 0 0 0 1 (3.7) 
Kisumu, Kenya, n = 110 108 (98.2) 105 (95.5) 106 (96.4) 2 (1.8) 3 (2.72) 4 (3.63) 26 (23.6) 
Uganda, n = 10 9 (90) 10 (100) 9 (90) 0 0 0 2 (20) 
Georgia, n = 72 44 (61.1) 50 (69.4) 41 (56.9) 2 (2.8) 11 (15.2) 11 (15.2) 16 (22.2) 
Total, N = 962 902 (93.7) 917 (95.3) 882 (91.7) 10 (1.02) 24 (2.5) 34 (3.6) 146 (15.2) 
*MICs interpreted according to Clinical and Laboratory Standards Institute criteria when available (22). CLSI resistance breakpoints used for penicillin 
(I>0.06; R>2.0 μg/mL), tetracycline (I>0.25; R>2.0 μg/mL), and ciprofloxacin (I>0.06; R>1.0 μg/mL) (22). Gonococcal Isolate Surveillance Project 
breakpoints used for azithromycin (I>1; R>2.0 μg/mL), cefixime (I>0.06; R>0.25 μg/mL), and ceftriaxone (I>0.06; R>0.125 μg/mL) (23,24), because CLSI 
has not established criteria for resistance to those antimicrobial drugs. Gentamicin breakpoints (I≥8–16 μg/mL; R I>32.0 μg/mL) were determined 
according to research published by the Centers for Disease Control and Prevention (25).  
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Molecular Determinants of AMR and  
Genomic Characterization
All 676 isolates with high-level tetracycline resistance 
(TetR) (MIC >8 μg/mL) (676/962 [97.7%]) isolates) 
harbored the tetM gene and the rpsJ V57M mutation, 
whereas isolates with MICs of 0.5–3 μg/mL did not 
carry the tetM gene but had the rpsJ V57M mutation 
(Table 2). Among the 917 benzylpenicillin-resistant 
isolates carrying β-lactamase–producing plasmids, 4 

different β-lactamase resistance genes were detected; 
blaTEM-1 was detected in 57.1% of isolates and blaTEM-135 
was detected in 10.3% of isolates. One isolate from 
Peru harbored the blaTEM-22 plasmid. The blaTEM-239 plas-
mid was present in 6 isolates from East Africa (1 from 
Uganda and 5 from Kenya).

In contrast, the number of isolates harboring 
chromosomally mediated determinants of AMR var-
ied widely. Mutations in the mtrR gene (G45D) were 
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Table 2. Presence of antimicrobial-resistant genetic determinants in study of common patterns and unique threats in antimicrobial 
resistance as demonstrated by global gonococcal surveillance* 

Region 

No. (%) isolates 
Tetracycline 
resistance 

 

Benzylpenicillin 
resistance 

 
Ciprofloxacin resistance 

 

Azithromycin 
resistance 

 

Cefixime and 
ceftriaxone resistance 

V57 tetM -lactams ponAL421P gyrA parC mtrD Mtr penA 
Thailand,  
n = 516 

506 
(98) 

449 
(87) 

 blaTEM-1, 
327 (63.4); 
blaTEM-135, 
77 (15)  

80 (15.5)  S91, D95, 
318 (61.6) 

D86, 217 
(42); S87, 218 
(42.2); E91, 

21 (4); S88, 8 
(1.5)  

 MtrD S821A 
K823E, 7 

(1.35) 

 Internal 
stop 

codon, 
27 (5.3) 

I312M 
V316T 

G545S, 2 
(0.38) 

Ghana, n = 19 19 
(100) 

15 
(79) 

 blaTEM-1, 13 
(68.4) 

16 (84.2)  S91, D95, 
17 (89.5) 

D86, 3 (17.6); 
S87, 12 

(70.6); E91, 1 
(5.9) 

 0  G45D, 7 
(36.8) 

I312M 
V316T 

G545S, 1 
(5.26) 

Peru, n = 208 208 
(100) 

87 
(41.8) 

 blaTEM-1, 
111 (53.3); 
blaTEM-135, 
13 (6.25); 
blaTEM-22, 1 

(0.48)  
 

120 
(57.6) 

 S91; D95, 
188 (90.3) 

D86, 52 (28); 
S87, 46 (24.7) 

 MtrD mosaic 
2, MtrR 

mosaic 2, 2 
(0.96) 

 G45D, 21 
(10) 

I312M 
V316T 

G545S, 17 
(8.17) 

Nairobi, 
Kenya, n = 27 

27 
(100) 

23 
(85.2) 

 blaTEM-1, 
22, 81.5) 

12 (44.4)  S91, D95, 
21 (77.7) 

D86, 1 (4.76)  0  0 0 

Kisumu, 
Kenya,  
n = 110 

110 
(100) 

99 
(90) 

 blaTEM-1, 32 
(29); 

blaTEM-135, 
3 (2.72); 
blaTEM-239, 
5 (4.54) 

66 (60)  S91, D95, 
106 (96.3) 

D86, 10 (9); 
S87, 9 (8.2); 
E91, 65 (59)  

 23s rDNA 
A2045G, 2 

(1.8) 

 A39, 84 
(76.5); 
G45, 2 
(1.8); 

D79, 11 
(10); 

M197, 1 
(0.9)    

A501, F504, 
A516 N512, 

4 (3.6) 

Uganda,  
n = 10 

10 
(100) 

10 
(100) 

 blaTEM-1, 8 
(80); 

blaTEM-135, 
1 (10); 

blaTEM-239, 
1 (10) 

5 (55)  S91, D95, 
10 (100) 

D86, 4 (40); 
S87, 2 (20); 
E91, 4 (40) 

 0  A39, 8 
(80); 

D79, 2 
(20) 

F504, 10 
(100); A516, 

10 (100) 

Georgia,  
n = 72 

47 
(65.3) 

14 
(19.4) 

 blaTEM-1, 11 
(15.3) 

40 (55.5)  S91, D95, 
41 (57) 

D86, 12 
(19.5); S87, 
31 (75.6); 

E91, 12 (29.3) 

 MtrD mosaic 
2, MtrR 

mosaic 2, 2 
(2.7); MtrD 

S821A 
K823E, 5 

(6.9) 

 A39, 28 
(38.9); 
G45, 6 
(8.3); 

D79, 14 
(19.4); 

M197, 2 
(2.7) 

I312M 
V316T 

G545S, 9 
(12.5%) 

Total, N = 962 928 
(96.4) 

697 
(72.5) 

 blaTEM-1, 
524 (54.5); 
blaTEM-135, 
94 (9.77); 
blaTEM-239, 
6 (0.62); 

blaTEM-22, 1 
(0.10) 

339 
(35.2) 

 S91, D95, 
701 (72.9) 

D86, 299 
(31); S87, 318 
(33); E91, 103 

(10.7) 

   A39, 641 
(66.6);  

G45D, 36 
(3.74) 

 

*Percentages calculated on total number of Neisseria gonorrhoeae isolates confirmed for the country. 

 

http://www.cdc.gov/eid


REPORTS FROM US DoD-GEIS PROGRAM

present in 3.7% of isolates, and mutations in the mtr 
promoter region (−35Adel) were present in 10% per-
cent of isolates, whereas the A39THTH mutation 
was more prevalent (66.6% of isolates). Overall, we 
identified MtrR disruptions in 12% of isolates. The 
ponAL421P mutation was found in 35.2% of isolates, 
whereas porB mutations A121N, G120K, and A121D 
were less common and found in 2.2% of isolates 
(A121N), 8.6% of isolates (G120K), and 3.8% of iso-
lates (A121D). All isolates with reduced susceptibility 
or resistance to ciprofloxacin (MICs 1 to >32 μg/mL) 
harbored S91F and D95G/A/N mutations in gyrA. 
Mutations in parC (D86, S87, or E91K) were found in 
74.8% of isolates. We found the fusA A563V mutation, 
which confers reduced susceptibility to gentamicin, 
in 1 isolate from Peru (26,27).

Isolates with reduced susceptibility to azithromy-
cin harbored myriad chromosomal resistance deter-
minants. Mosaic mtrD and mtrR alleles were found 
in 4 isolates (2 from Georgia and 2 from Peru). One 
of those Georgia isolates also carried the penA mosaic 
allele XXXIV. One isolate from Peru carried the mtrR 
mosaic allele but lacked the mtrD mosaic allele. We 
found that 7 isolates from Thailand harbored mtrD 
S821A K823E mutations associated with azithromy-
cin resistance (28), but only 4 of the 7 isolates had re-
duced susceptibility to azithromycin (MICs >1 μg/
mL). The 23s rDNA A2045G mutation was present in 
2 isolates from Kenya (MIC >256 μg/mL). Examina-
tion of ESC resistance determinants showed that 32 of 
the 962 isolates carried mosaic penA alleles. We detect-
ed 4 mosaic penA alleles: XXXIV (24 isolates [2.5%]), 
166 (2 isolates [0.2%]), and 217 (5 isolates [0.5%]); 1 
isolate (0.1%) had a novel allele. Of those 32 isolates, 
29 had reduced susceptibility to cefixime and 11 had 

reduced susceptibility to both cefixime and ceftriax-
one. We found that 5 isolates with reduced suscepti-
bility to both ceftriaxone and cefixime did not carry a 
mosaic penA allele.

We monitored the type of porB1 allele present, 
which encodes the major outer membrane porin 
(PorB). N. gonorrhoeae strains express 1 of 2 porB1 al-
leles. The porB1A allele is associated with strains that 
cause disseminated infection, whereas strains with 
porB1B more frequently cause localized infections 
(29). Although porB1B strains are usually more com-
mon, the frequencies of porB1A and porB1B alleles 
were similar among the 962 isolates, except for Thai-
land, Georgia, and Peru isolates. Thailand isolates 
cultured before 2016 (n = 88) carried porB1A more 
frequently (81/88 [92.0%]) than porB1B (7/88 [8.0%]). 
After 2016, porB1B strains were isolated more often in 
Thailand. Among isolates from Georgia, only 5 (6.9%) 
isolates expressed porB1A, and in Peru, 62 (47.3%) of 
131 porB1A-expressing isolates were collected during 
2014–2017, compared with 14 isolates (18.2%) of 77 
porB1A strains collected during 2018–2022.

Molecular typing identified 98 NG-MAST, 198 
MLST, and 199 NG-STAR sequence types (STs) 
among the 962 isolates (Figure 1). We found that 706 
isolates belonged to a novel NG-MAST ST. The most 
common defined NG-MAST STs were ST6211 (n = 
36), ST8058 (n = 21), ST2318 (n = 14), ST5573 (n = 12), 
and ST681 (n = 10). We identified novel MLST STs in 
225 of 962 isolates. The most common MLST STs were 
ST1587 (n = 133), 1588 (n = 80), 7363 (n = 55), 8756 (n 
= 55), 8143 (n = 44), and 7827 (n = 40). Those isolates 
were all ciprofloxacin resistant. Using NG-STAR, we 
identified 173 novel types. The most common defined 
NG-STAR STs were ST719 (n = 69), ST271 (n = 24), 
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Figure 1. Distribution of most prevalent NG-MAST, MLST, and NG-STAR schemes in Global Emerging Infections Surveillance isolates of 
Neisseria gonorrhoeae received at Uniformed Services University, Bethesda, Maryland, USA, from sites outside the United States (n = 962) in 
study of common patterns and unique threats in antimicrobial resistance as demonstrated by global gonococcal surveillance. A) Percentage of 
isolates assigned to the most common NG-MAST types in each region. B) Percentage of isolates assigned to the most common MLST types 
in each region. C) Percentage of isolates assigned to the most common NG-STAR types in each region. MLST, multilocus sequence typing; 
NG-MAST, N. gonorrhoeae multiantigen sequence typing; NG-STAR, N. gonorrhoeae sequence typing for antimicrobial resistance.
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ST801 (n = 23), and ST1203 (n = 22). The distribution 
of NG-MAST, MLST, and NG-STAR STs also revealed 
that certain STs are specific to various regions (Figure 
1). We generated a minimum-spanning tree on the ba-
sis of core genome MLST of all isolates, categorized 
by geographic location, to examine genomic diversity 
and possible clonal spread (Figure 2). Isolates from 
Thailand clustered into 4 major groups, and 3 appear 
to be clonal isolates (black arrows). Georgia isolates 
also clustered, but some were closely related to iso-
lates from Thailand (≈300 core genome allele differ-
ences). Isolates from Peru grouped into 5 clusters.

Discussion
Increasingly resistant N. gonorrhoeae infections pres-
ent a major public health burden for civilian commu-
nities, military force health protection, and US mili-
tary readiness. Surveillance programs incorporating 
specimen culture are critical for linking genotypic 
and phenotypic AMR data to enable AMR prediction. 
The WHO EGASP program provides data from 68 
countries in 6 regions as of 2018 (30). The GEIS net-
work fills some key gaps in surveillance, including 
Eastern Europe and East Africa, where N. gonorrhoeae 
AMR data remain scarce.

This study reports phenotypic and genotypic 
analyses of geographically and temporally diverse 
NG isolates collected through the GEIS STI surveil-
lance program. Isolates from international sites dis-
played high frequencies of resistance to benzylpeni-
cillin, tetracycline, and ciprofloxacin, ranging from 

50% to 100%. Those data are similar to data from pre-
viously published literature. Investigators from Peru 
identified ≈95% resistance to ciprofloxacin (31–33), 
whereas reduced susceptibility or resistance to peni-
cillin was observed in 99.4% of isolates and to tetracy-
cline in 94.5% of isolates (31). In Peru, 76% of isolates 
were reported to have reduced susceptibility to gen-
tamicin (31). In comparison, however, our study iden-
tified reduced susceptibility to gentamicin in ≈15% of 
isolates. Regional differences in AMR patterns can be 
driven by community-based factors, including lim-
ited access to care and lack of available diagnostics, 
leading to empiric treatment. Similarly, lack of access 
to recommended antibiotic drugs and readily avail-
able access to other over-the-counter antibiotic drugs 
in the absence of valid healthcare encounters can also 
drive selection for N. gonorrhoeae AMR. For example, 
ciprofloxacin is still used empirically to treat STIs in 
Peru and other countries in Latin America. In Ugan-
da, cefixime therapy is recommended but not easily 
available (34).

In Georgia, the recommended treatment for N. 
gonorrhoeae remains 1 g ceftriaxone plus 2 g azithro-
mycin. Isolates from Georgia displayed lower fre-
quencies of resistance to penicillin, tetracycline, and 
ciprofloxacin (≈50%) than did isolates from Africa 
and Asia (>90%). However, isolates from Georgia 
were more likely to exhibit reduced susceptibility to 
ESCs (≈15%) than were isolates from Asia and Africa 
(≈3.6%). N. gonorrhoeae can develop resistance to an-
tibiotic drugs within a few decades of introduction 
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Figure 2. Minimum-spanning tree showing genome-based genetic relatedness of all N. gonorrhoeae isolates received at Uniformed 
Services University (n = 1,044), Bethesda, Maryland, USA, in study of common patterns and unique threats in antimicrobial resistance 
as demonstrated by global gonococcal surveillance. Tree was generated using core genome multilocus sequence typing. Each circle 
represents >1 isolates; isolates with 1–10 allelic differences are emphasized by gray shading around the lines and are considered highly 
genetically related with suspicion of nosocomial origin. Isolates are colored corresponding to their country of origin. Possible clonal 
isolates are shown with black arrows.
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(35). Earlier uptake of ESCs in Georgia might account 
for the decrease in susceptibility seen, compared with 
our isolates collected from the global south. Antimi-
crobial susceptibility among Georgia isolates might 
also be affected by population changes caused by 
neighboring political unrest. Several studies of STIs in 
migrants, refugees, and internally displaced persons 
observe that these populations might be at higher risk 
for sexual assault and STI (36). However, the poten-
tial association between migration and N. gonorrhoeae 
AMR requires further study (37).

Many multidrug-resistant N. gonorrhoeae iso-
lates originate in Asia (1). However, isolates from 
Thailand tested at the GC Repository exhibited low 
overall frequencies of resistance to primary thera-
pies such as cefixime (0.4%), ceftriaxone (3%), and 
azithromycin (0.77%). The findings are surprising 
given the regional history of resistant N. gonorrhoeae; 
however, other recent surveillance studies in Thai-
land have observed similar results (38). The GC Re-
pository recently received 18 isolates collected from 
high-risk patients in Pattaya, Thailand, that exhib-
ited higher frequencies of resistance to macrolides 
and ESCs.

Recently, the US Centers for Disease Control and 
Prevention published guidelines on preventive treat-
ment for bacterial STIs using doxycycline postexpo-
sure prophylaxis (doxyPEP) (39). Multiple prospec-
tive studies observed a reduction in incident bacterial 
STIs among men who have sex with men who were 
taking doxyPEP (40–42). Those studies have largely 
focused on syphilis, but the effect on N. gonorrhoeae 
infection has been noted. For example, in South Afri-
ca, doxyPEP reduced N. gonorrhoeae infections in men 
by 50%, but no difference was observed in cisgender 
women in Kenya taking doxyPEP compared with 
women in the standard care group (43). Many isolates 
tested at the GC Repository had the tetM gene, which 
is harbored in the easily spread pCONJ plasmid and 
can be transferred with pbla (44,45), which might 
counter the potential effectiveness of doxyPEP for 
gonorrhea prevention. Although doxycycline therapy 
is not commonly used for contemporary treatment of 
N. gonorrhoeae, continued surveillance is essential to 
understand the potential effects of doxyPEP on trans-
mission and AMR.

Limitations of this study include low sample size 
and a study population that might be neither popu-
lation-representative nor representative of the Unit-
ed States or partner nation militaries. As previously 
mentioned, most isolates originated from urethral 
samples taken from men, largely because of both local 
clinical standards of care at collection sites and ease 

of sample collection and culture. Genital specimens 
from female patients, in contrast, are more difficult 
to culture, possibly because of the robust female uro-
genital microbiome. Extragenital isolates, which were 
infrequent in this study, are particularly relevant 
because of their proximity to commensal Neisseria, 
which may provide opportunities for horizontal gene 
transfer and acquisition of genetic determinants of 
AMR. In addition, the GC Repository has limited ac-
cess to demographic and clinical data, such as sex or 
military status.

As of January 2024, two new antibiotic drugs 
for the treatment of gonorrhea infections, zolifloda-
cin and gepotidacin (46,47), have undergone Phase 
III clinical trials with promising results. Even with 
impending availability, however, the ease of AMR 
development in N. gonorrhoeae still portends a grim 
outlook for long-term treatment effectiveness. With-
out a vaccine, enhanced surveillance of N. gonorrhoeae 
AMR that combines culture, epidemiologic informa-
tion, and molecular data must continue to identify ge-
netic determinants of AMR and inform appropriate 
treatment recommendations.
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