
Global transmission of high-risk pandemic clones 
of gram-negative bacteria presents a serious 

threat to human health and complicates bacterial dis-
ease management, resulting in high illness and death 
rates and an enormous economic burden on health-
care systems (1). The pathogens are characterized by 
resistance to multiple classes of antimicrobial drugs, 
carriage of virulence genes, transmissibility to hu-
mans and animals, and global distribution. The nega-
tive effects of antimicrobial-resistant infections in 
terms of gross domestic product and disease burden 
will be disproportionally borne by low- and middle-
income countries (2,3).

Global high-risk clones are of particular concern 
because they are multidrug resistant, can persist in 

hosts, are highly pathogenic, can have a fitness ad-
vantage, and can transfer easily between hosts (4,5). 
Using an antimicrobial resistance (AMR) surveillance 
program spanning 10 years (2012–2022), we describe 
the population structure and features of high-risk 
multidrug-resistant (MDR) Escherichia coli and Klebsi-
ella pneumoniae in Kenya, Uganda, and Jordan. 

Methods
We examined the population structure of MDR iso-
lates (defined as resistance to >3 classes of antimi-
crobial drugs) (6) from Kenya, Uganda, and Jordan 
(Appendix Figure 1, https://wwwnc.cdc.gov/EID/
article/30/14/24-0370-App1.pdf) during 2012–2022, 
collected through the US Armed Forces Health Surveil-
lance Division, Global Emerging Infections Surveillance 
program. Our study followed an active surveillance ap-
proach (with additional passive isolates in Kenya only), 
and according to the Centers for Disease Control and 
Prevention definition, infections were either health-
care-associated or community-acquired (Table) (7). 

During 2012–2019, in Jordan, the Naval Medi-
cal Research Unit EURAFCENT, together with the  
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Surveillance of antimicrobial resistance in Kenya, Uganda, 
and Jordan identified multidrug-resistant high-risk bacte-
rial clones: Escherichia coli sequence types 131, 1193, 
69, 167, 10, 648, 410, 405 and Klebsiella pneumoniae se-
quence types 14, 147, 307, 258. Clones emerging in those 
countries exhibited high resistance mechanism diversity, 
highlighting a serious threat for multidrug resistance.
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Jordan Ministry of Health, collected 148 E. coli and 
212 K. pneumoniae isolates from 9 hospitals (Appen-
dix). During 2012−2022, in Kenya, the Walter Reed 
Army Institute of Research-Africa and the Kenya 
Ministries of Health and Defense collected 430 E.coli 
and 97 K. pneumoniae isolates from 12 hospitals. Also 
during 2012−2022,  in Uganda, Makerere Univer-
sity Walter Reed Project, together with the Uganda 
Ministry of Health and Ministry of Defense, col-
lected 207 E.coli and 69 K. pneumoniae isolates from 
4 hospitals. Together, those collections resulted in a 
total of 785 E. coli and 378 K. pneumoniae MDR clini-
cal isolates analyzed in our study (Appendix). The 
isolates were collected from patients 0.1–104 years 
of age and from different sources, including wounds 
(n = 323), urine (n = 411), blood (n = 79), pus (n = 
134), respiratory tract (n = 195), and others (Table). 
To identify MDR strains for further characteriza-
tion through whole-genome sequencing, we tested  

susceptibility to a panel of different classes of anti-
microbials by using disk diffusion and the VITEK2 
system (bioMérieux, https://www.biomerieux.
com) in accordance with Clinical and Laboratory 
Standards Institute guidelines (8).

We subjected all MDR E.coli and K. pneumoniae 
isolates to whole-genome sequencing and de novo 
assemblies as previously described (9) and depos-
ited the data in GenBank (BioProject accession nos. 
PRJNA955428, PRJNA1015582, PRJNA1076681, PRJ-
NA1076682, PRJNA1078230, PRJNA1078534, PRJ-
NA1078535). We assessed the population structure by 
using core-genome multilocus sequence typing and 
species-specific minimum spanning trees as previ-
ously described (9). 

Results
The 785 E. coli genomes represented 124 sequence 
types (STs), of which 20 (16.1%) were shared between 
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Table. Demographic and clinical characteristics of patients from whom isolates were collected in study of genomic epidemiology of 
multidrug-resistant Escherichia coli and Klebsiella pneumoniae in Kenya, Uganda, and Jordan 

Variable 
Escherichia coli, no. (%) 

 
Klebsiella pneumoniae, no. (%) 

Kenya, n = 430 Uganda, n = 207 Jordan, n = 148 Kenya, n = 97 Uganda, n = 69 Jordan, n = 212 
Age groups, y        
 0–4 7.2 (31) 1.9 (4) 19.6 (29)  7.2 (7) 7.2 (5) 26.9 (57) 
 5–9 1.9 (8) 0  5.4 (8)  0 1.4 (1) 4.7 (10) 
 10–17 2.1 (9) 3.4 (7) 4.1 (6)  3.1 (3) 0 4.2 (9) 
 18–49 61.4 (264) 67.6 (140) 22.3 (33)  60.8 (59) 58 (40) 22.6 (48) 
 >50 27.4 (118) 24.2 (50) 45.9 (68)  28.9 (28) 27.5 (19) 41.5 (88) 
 Not available 0 2.9 (6) 2.7 (4)  0 5.8 (4) 0 
Sex        
 M 47.4 (204) 37.7 (78) 59.5 (88)  60.8 (59) 56.5 (39) 75.0 (159) 
 F 51.9 (223) 62.3 (129) 40.5 (60)  39.2 (38) 42.0 (29) 25.0 (53) 
 Not available 0.7 (3)  0  0 1.4 (1) 0 
Infection type         
 CAI 81.4 (350) 48.8 (101) 48.0 (71)  68.0 (66) 33.33 (23) 14.2 (30) 
 HAI 15.8 (68) 42.5 (88) 52.0 (77)  28.9 (28) 56.52 (39) 85.8 (182) 
 Not available 2.8 (12) 8.7 (18) 0  3.1 (3) 10.14 (7) 0 
Year of isolation         
 2011 0 0 0  0 0 0.5 (1) 
 2012 0 0 6.8 (10)  0 0 9.0 (19) 
 2013 0 1.0 (2) 16.2 (24)  0 0 14.2 (30) 
 2014 0 0 18.2 (27)  0 0 7.1 (15) 
 2015 7.7 (33) 10.1 (21) 26.4 (39)  4.1 (4) 7.2 (5) 34.0 (72) 
 2016 4.2 (18) 9.7 (20) 21.6 (32)  3.1 (3) 21.7 (15) 21.2 (45) 
 2017 7.4 (32) 7.7 (16) 3.4 (5)  10.3 (10) 10.1 (7) 10.8 (23) 
 2018 25.6 (110) 5.8 (12) 4.1 (6)  29.9 (29) 5.8 (4) 0.9 (2) 
 2019 19.8 (85) 4.3 (9) 3.4 (5)  17.5 (17) 5.8 (4) 2.4 (5) 
 2020 6.7 (29) 13.5 (28) 0  5.2 (5) 7.2 (5) 0 
 2021 15.3 (66) 22.2 (46) 0  21.6 (21) 30.4 (21) 0 
 2022 13.3 (57) 25.6 (53) 0  8.2 (8) 11.6 (8) 0 
Sample type        
 Wound/skin 49.1 (211) 10.6 (22) 11.5 (17)  71.1 (69) 2.9 (2) 0.9 (2) 
 Urine 39.3 (169) 57.5 (119) 34.5 (51)  20.6 (20) 39.1 (27) 11.8 (25) 
 Blood 0.2 (1) 1.0 (2) 20.3 (30)  0.0 2.9 (2) 20.8 (44) 
 Pus 8.4 (36) 29.5 (61) 0  7.2 (7) 43.5 (30) 0 
 Throat 0.5 (2) 0 0  0 0 0 
 Respiratory 0.0 (2) 0 33.8 (50)  0 2.9 (2) 66.5 (141) 
 Other 2.1 (9) 1.4 (3) 0  1.0 (1) 8.7 (6) 0 
 Not available 0.5 (2) 10.6 (22) 0  0 0 0 
*CAI, community-acquired infection; HAI, healthcare-associated infection. 
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countries (Figure 1). For E. coli, the dominant ST was 
ST131 (Figure 1) in all 3 countries (Kenya 21.6%, n = 
93; Uganda 21.3%, n = 44; and Jordan 16.9%, n = 25), 
collectively representing 20.6% (n = 162). The global 
high-risk clones (STs 131, 1193, 167, 69, 38, 10, 648, 
410, 405, 73, 12, 117, 127, 95, and 393) constituted 
62.4% (490/785) of all isolates. Evolution of the high-
risk strains over the years was noted; in 2020, ST1193 
became dominant in Kenya and Uganda, and no iso-
lates were available from Jordan after 2020 (Appendix 
Figure 2). ST131 isolates decreased dramatically in 
Kenya in 2020 and in Uganda in 2018 and 2019; ST10 
peaked in Jordan in 2012, in Kenya in 2018–2020, and 
in Uganda in 2020, after which it declined. ST648 spo-
radically appeared annually across all countries. The 
dominant E. coli phylogroups in all countries were B2, 
A, D, and B1, which comprised 90% of the isolates; B2 
was the most dominant at 39.5%.

Similarly, genetic diversity of K. pneumoniae was 
high. There were 123 distinct STs, and only 11 (8.9%) 

STs were shared across the 3 countries (Figure 1). Jor-
dan and Uganda had 75 distinct STs each, and Kenya 
had 37 STs. No clear evolutionary patterns of STs were 
observed over the years; STs appeared sporadically 
in different years except for ST420, which emerged 
in Uganda from 2020 to become a dominant ST, and 
ST14, which was the dominant strain in Jordan dur-
ing 2013–2015. The high-risk clonal groups (CGs; 14, 
15, 16, 101, 147, 307, 23, 65, 231, 258, 86) were detected 
and represented in 29.1% of the isolates. The high-risk 
CG14 (ST14) and CG147 (ST147) were very dominant 
in Jordan; CG15 and CG55 were exclusive to Kenya, 
and the global high-risk clone CG258 (ST258) was 
only in Jordan.

We analyzed whole-genome sequences for resis-
tance determinants by using AMRFinderPlus (10) and 
ARIBA (11) and iTOL software version 6.8.1 (https://
itol.embl.de) for visualization (12), as previously de-
scribed (9). E. coli had 145 (Figure 2) and K. pneumoniae 
had 200 (Figure 3) diverse resistance determinants for 
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Figure 1. Population structure and diversity of high-risk Escherichia coli and Klebsiella pneumoniae sequence types across Kenya, 
Uganda, and Jordan. Minimum-spanning trees of E. coli (n = 785) and K. pneumoniae (n = 378) isolates are based on core-genome 
multilocus sequence typing. Each node represents an isolate; dominant STs are indicated in circled clusters. Branch length between 
nodes is proportional to the allelic differences between nodes. Purple indicates isolates from Kenya, gray from Uganda, and green from 
Jordan. ST, sequence type.
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various classes of antimicrobial drugs. Among the re-
sistance determinants of concern were the acquired 
extended-spectrum β-lactamases (ESBLs), mainly be-
cause of carriage of the blaCTX-M-15 gene, identified in 
50.8% of E. coli isolates and 68.8% of K. pneumoniae 
isolates, distributed in different STs (Figure 3). For 
E. coli, most (28.5%) ESBLs were in ST131, and the  
blaCTX-M-27 allele was detected in 15% of the isolates. 
Carbapenem resistance was detected more in K. pneu-
moniae than in E. coli. In K. pneumoniae, carbapenemase 

genes were detected in 47 (12%) isolates, 43 of which 
were from Jordan; some isolates were co-harboring 
multiple carbapenemases, other resistance determi-
nants, or both, including carbapenem resistance genes. 
ESBL genes in Jordan included blaNDM-1 (11.3%), blaOXA-48 
(7.3%), blaOXA-181 (0.9%), blaNDM-5 (0.9%), and blaVIM-4 (0.3%) 
(Figure 3). Isolates from Uganda carried blaOXA-181 (2.9%) 
and blaNDM-5 (1.4%). blaNDM-1 and blaNDM-5 were detected 
in isolates from Kenya, both at 2.1%. Four isolates, all 
from Jordan, belonged to lineage ST147 and were of 
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Figure 2. Comprehensive distribution of antimicrobial-resistance genes in 785 Escherichia coli isolates from Kenya, Uganda, and 
Jordan. Antimicrobial-resistance genes associated with nonsusceptibility to various antibiotic classes (polymyxins, third- and fourth-
generation cephalosporins, carbapenems, phenicols and quinolones, and aminoglycosides) for each isolate are labeled for presence 
(red) or absence (white). The presence or absence of gene(s) is mapped onto a neighbor-joining tree curated from its minimum-
spanning tree. The major high-risk STs are labeled on the neighbor-joining tree. ST, sequence type.
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serotype K64:O2a that co-carried blaNDM-1 and blaOXA-48 
(n = 2) or blaNDM-5 and blaOXA-181 genes (n = 2); 1 isolate 
from ST23, of serotype K1:01, also carried blaNDM-1 and 
blaOXA-48. In E.coli, carbapenemase genes were detected 
in 8 isolates: blaNDM-5 (n = 7) and blaOXA-244 (n = 1) (Figure 
2). Four isolates carrying blaNDM-5 co-carried blaCTX-M-15, 
belonging to lineages ST167 (n = 3) and ST648 (n = 1). 
The remaining isolates that did not co-carry blaCTX-M-15 
belonged to ST410 (n = 2) and ST361 (n = 1).

The plasmid-encoded mobile colistin resistance 
mcr-1.1 genes for colistin resistance were detected 
in only 2 (0.3%) of the E. coli isolates; 5 isolates of K. 
pneumoniae carried mcr-8.1 in 3 isolates and mcr-9 in 1 
isolate distributed among ST15, ST14, ST29, and ST16. 
One K. pneumoniae isolate carried mcr-9 and blaVIM-4. 
Several other resistance determinants were detected 
(Figures 2, 3), many of which were carried on plasmid 
replicons (i.e., IncFIB [77.7%], IncFIA_1 (59.5%], and 
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Figure 3. Comprehensive distribution of antimicrobial-resistance genes in 378 Klebsiella pneumoniae isolates from Kenya, Uganda, 
and Jordan. Antimicrobial-resistance genes associated with nonsusceptibility to various antibiotic classes (polymyxins, third- and fourth-
generation cephalosporins, carbapenems, phenicols and quinolones, and aminoglycosides) for each isolate are labeled for presence 
(red) or absence (white). The presence or absence of gene(s) is mapped onto a neighbor-joining tree curated from its minimum-spanning 
tree. The most prevalent STs are labeled on the neighbor-joining tree. ESBLs, extended-spectrum β-lactamases; ST, sequence type.

http://www.cdc.gov/eid


REPORTS FROM US DoD-GEIS PROGRAM

IncFIB(K)_1 [59.9%] for E. coli and IncFIB(K)_1 [59.9%] 
and IncFII(pKP91)1 [56.6%] for K. pneumoniae). Of note, 
most K. pneumoniae isolates harboring carbapenemase-
resistance genes had multiplasmid replicons rang-
ing from 2 to 9 replicons per isolate, especially the 
self-transmissible IncFII-IncFIB plasmid carrying the 
blaNDM-1 gene. Variability in the surveillance strategies 
and clinical characteristics of patients between coun-
tries could have skewed the between-country isolate 
genomic characteristics and numbers of E. coli and K. 
pneumoniae isolates in the different populations.

Discussion
The increasing spread of high-risk clones of E. coli and K. 
pneumoniae constitutes a serious threat for managing in-
fections caused by those bacteria (5) to civilian and mili-
tary populations, which often operate in harsh environ-
ments that increase their exposure to MDR pathogens. 
The population structure revealed high genetic diversity 
of STs and resistance determinants in the different coun-
tries. The E. coli population was dominated by ST131 in 
all 3 countries, consistent with its global dominance re-
gardless of source (13), and was followed by ST1193, a 
high-risk clone that recently diverged from ST131.

Emerging E. coli ST1193 in Uganda and Kenya are 
frequently associated with extra-intestinal communi-
ty-acquired urinary tract (14) and bloodstream infec-
tions, often with quinolone resistance-determining 
region mutations, ESBL blaCTX-M genes, and IncF plas-
mids (15). Of note, potential zoonotic STs (ST10, ST95, 
and ST117) were detected, some of which are com-
mon in food animals (16–19) and known to carry an 
abundance of virulence factors and pathogenic poten-
tial that enable them to transmit, persist, and adapt to 
different hosts and environments (17).

K. pneumoniae isolates ST39 and ST17 were found 
mainly in East Africa countries and have previously 
been described in Kenya and Uganda (20,21). ST17 has 
been associated with regional outbreaks in Tanzania 
and Kenya and is prone to causing hospital outbreaks, 
making it an ST to monitor closely (22,23). In Jordan, 
high-risk CG14 (ST14) and CG147 (ST147) were domi-
nant compared with East Africa countries, which 
could be associated with Jordan’s surveillance being 
focused on nosocomial infections (24), as well as the 
MDR CG258, which indicate the unique threats in Jor-
dan. ST25, identified in MDR isolates from Kenya and 
Jordan, is concerning because of its reported hyper-
mucoviscous phenotype and virulence-AMR conver-
gence, resulting in poor clinical outcomes, although we 
did not detect that convergence in our study (25,26).

We identified a high diversity of resistance mecha-
nisms; about half of the isolates carried an ESBL gene, 

mainly because of the extensively distributed blaCTX-M-15 
gene, which was more prevalent among K. pneumoniae 
than among E. coli. Our study also detected several 
carbapenemase genes, primarily in K. pneumoniae iso-
lates. Jordan reported more carbapenemase-resistance 
isolates than did the East Africa countries, similar to 
previous reports of high carbapenemase-resistance 
levels in Jordan (24) and India, which reported 30%–
35% and co-expression of NDM and OXA-48 in 15.3% 
of carbapenemase-resistance isolates (27).

The increased resistance to last-line antimicro-
bial drugs (i.e., carbapenems and third- and fourth-
generation cephalosporins) is concerning amid the 
increased excess, access, and misuse of antimicrobial 
drugs. The increase in mobile genetic elements that 
mobilize and spread resistance determinants further 
enhances spread. IncF and Col plasmids were the 
most common plasmid replicons among the MDR 
isolates; IncF plasmids are considered the more rel-
evant contributors to the spread of AMR (28,29).

Overall, our study highlights the emergence and 
threat of genetically diverse high-risk MDR clones of 
2 of the most critical groups of MDR bacteria causing 
severe infections with limited treatment options. The 
abundance of global high-risk STs bearing resistance 
genes indicates their effective dissemination, the po-
tential for intraspecies and interspecies transmission 
of resistance genes, and emergence of new high-risk 
clones. To curtail the threat, continuous surveillance 
to monitor spread and emergence of dangerous 
clones is critical for supporting effective preventive 
measures and tailored therapies to match the regional 
and global risk to public and military health.
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