Article DOI: https://doi.org/10.3201/eid3101.241491

EID cannot ensure accessibility for supplementary materials supplied by authors. Readers who have difficulty accessing supplementary content should contact the authors for assistance.

Fatal Mixed *Plasmodium* Infection in Traveler Returning to Colombia from Comoros Islands, 2024

Appendix

Isolation of parasite DNA and identification of P. falciparum and P. vivax

DNA was extracted from Wright-Giemsa-stained slides, which had been confirmed positive for *Plasmodium* sp. by microscopy. The extraction was performed using the High Pure PCR Template Preparation Kit (Roche) according to the manufacturer's instructions with minor modifications. Initially, the slides were immersed in xylene (Fisher Scientific) for 5 seconds, followed by rinsing with running water. Lysis buffer was then added for 5 minutes. The supernatant was collected and transferred into a 1.5-ml microtube. Subsequent steps followed the manufacturer's protocol.

P. falciparum and *P. vivax* were identified by nested PCR. The first round of PCR targeted the amplification of an 18S rRNA fragment for genus-level detection, while a second amplification (using the first PCR product as the template) was performed to identify the specific *Plasmodium* species using species-specific primers previously reported (Appendix Table 1) (*1*).

All PCRs were performed under the following conditions: 1X GoTaq® Green Master Mix (Promega), 1 μ M of each primer, and 2 μ L of template in a final volume of 12 μ L. The thermocycling profile followed previously published protocols (<u>1</u>). All products obtained were analyzed in 2% agarose gels, stained with SYBR safe (Invitrogen). Finally, PCR products were purified using EXOSAP (Affymetrix) and sequenced in both directions with the BigDye Terminator kit (Macrogen, Seoul, South Korea).

Phylogenetic Analysis

The sequences obtained in this study were edited and assembled using UGENE software (2). For phylogenetic reconstructions, sequences of the 18S rRNA gene for *P. falciparum* and *P. vivax* were obtained from GenBank. These sequences were reported from African countries (including South Africa, Cameroon, and Nigeria), Asian countries (such as India, Yemen, China, and Pakistan), as well as from Colombia and Brazil in South America. Subsequently phylogenetic analyses were performed based on sequences aligned using CLUSTAL W (3). A maximum likelihood tree was constructed with the aligned sequences using the IQtree tool (*4*). The bootstrap method (BT, 1,000 replicates) was used to assess the robustness of the nodes, defining each cluster with a BT >80%. The phylogenetic trees were graphically visualized using the web-based tool Interactive Tree Of Life V3 (http://itol.embl.de) (5).

Identification of P. falciparum and P. vivax and phylogenetic analysis

For type-specific identification, the results showed amplification of *P. falciparum* and *P. vivax* in all extracted slides. Regarding Sanger sequencing, once the sequences were received, they were verified, and a consensus sequence was generated for each using the UGENE program (2). Subsequently, a BLAST search (https://blast.ncbi.nlm.nih.gov/Blast.cgi) was performed to identify the species present. The results showed 99.4% identity for *P. falciparum* and 100% identity for *P. vivax*.

The consensus sequence obtained from Sanger sequencing for each *Plasmodium* species from the analyzed sample was used to construct a phylogenetic tree. The tree included *18S ribosomal RNA* gene sequences from the amplified fragment, publicly available for *P*. *falciparum* (n = 29) and *P. vivax* (n = 42) (Appendix Table 2). The phylogenetic tree was constructed using IQtree with 1,000 bootstrap replicates. The tree topology revealed that the *P. falciparum* sample (identified in the tree as Sample_1_COLOMBIA) grouped with sequences from South Africa. For the *P. vivax* sequence (identified in the tree as Sample_2_COLOMBIA), the results showed it clustered with sequences from Cameroon, Nigeria, China and India. Red dots on the tree indicate bootstrap support of 80%. The newly generated 18S rRNA gene sequences of *P. falciparum* and *P. vivax* were deposited in GenBank (accession numbers: PQ408861 and PQ408862 respectively).

References

- Kavunga-Membo H, Ilombe G, Masumu J, Matangila J, Imponge J, Manzambi E, et al. Molecular identification of Plasmodium species in symptomatic children of Democratic Republic of Congo. Malar J. 2018;17:334. <u>PubMed https://doi.org/10.1186/s12936-018-2480-5</u>
- Okonechnikov K, Golosova O, Fursov M; UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–7. <u>PubMed https://doi.org/10.1093/bioinformatics/bts091</u>
- Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80. <u>PubMed</u> <u>https://doi.org/10.1093/nar/22.22.4673</u>
- 4. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74. <u>PubMed https://doi.org/10.1093/molbev/msu300</u>
- 5. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44(W1):W242-5. <u>PubMed</u> <u>https://doi.org/10.1093/nar/gkw290</u>

Appendix Table 1. Primers used in this study

Plasmodium species	Primers	Sequence	Product size	
P. falciparum	rFAL-F	CTTTTGAGAGGTTTTGTTACTTTGAGTAA	205 pb	
	rFAL-R	TATTCCATGCTGTAGTATTCAAACAAAA		
P. vivax	rVIV-F	ACGCTTCTAGCTTAATCCACATAACT	120 pb	
	rVIV-R	ATTTACTCAAAGTAACAAGGACTTCCAAGC	-	

Appendix Table 2. Accession number of the sequences used in phylogenetic reconstruction

GenBank number	Species	Country
XR 002966679.1	P. falciparum	Not reported
OP341856.1	P. falciparum	South Africa
OP341854.1	P. falciparum	South Africa
OP341852.1	P. falciparum	South Africa
OP311714.1	P. falciparum	South Africa
OP311712.1	P. falciparum	South Africa
OP311711.1	P. falciparum	South Africa
OM049474.1	P. falciparum	India
MW439229.1	P. falciparum	India
MW439216.1	P. falciparum	India
MH937711.1	P. falciparum	India
MG708205.1	P. falciparum	India
KX007894.1	P. falciparum	China
KX007888.1	P. falciparum	China
KT991222.1	P. falciparum	Yunnan Province
KC906727.1	P. falciparum	Brazil
KC906722.1	P. falciparum	Brazil
KC906718.1	P. falciparum	Brazil
KC428742.1	P. falciparum	Cameroon
KC428741.1	P. falciparum	Cameroon
HQ283221.1	P. falciparum	Yemen

GenBank number	Species	Country
HQ283219.1	P. falciparum	Yemen
AF145334.1	P. falciparum	New Guinea
MW439210.1	P. falciparum	India
MG708210.1	P. falciparum	India
M19173.1	P. falciparum	Not reported
KX007877.1	P. falciparum	China
KT991233.1	P. falciparum	Yunnan Province
XR 003001229.1	P. vivax	Not reported
XR 003001206.1	P. vivax	Not reported
OR644623.1	P. vivax	Pakistan
MW549873.1	P. vivax	India
MW466536.1	P. vivax	India
MW425898.1	P. vivax	India
MW425881.1	P. vivax	India
MT515458.1	P. vivax	Nigeria
MH614628.1	P. vivax	Colombia
MG708221.1	P. vivax	India
MG708219.1	P. vivax	India
MG708215.1	P. vivax	India
MF540772.1	P. vivax	Sudan
MF540770.1	P. vivax	Sudan
KY014289.1	P. vivax	Benin
KY014287.1	P. vivax	Benin
KX007904.1	P. vivax	China
KT991310.1	P. vivax	Yunnan Province
KT991306.1	P. vivax	China
KT991293.1	P. vivax	China
KT991274.1	P. vivax	Yunnan Province
KT991261.1	P. vivax	Yunnan Province
KT991252.1	P. vivax	China
JQ627158.1	P. vivax	India
JQ627156.1	P. vivax	India
JN084167.1	P. vivax	Iran
HQ283224.1	P. vivax	Yemen
HQ283223.1	P. vivax	Yemen
GU233451.1	P. vivax	Indonesia
MT515456.1	P. vivax	Nigeria
KY014286.1	P. vivax	Benin
HF945441.1	P. vivax	Cameroon
HF945437.1	P. vivax	Cameroon
HF945438.1	P. vivax	Cameroon
HF945439.1	P. vivax	Cameroon
HF945440.1	P. vivax	Cameroon
MK131265.1	P. vivax	Nigeria
MK131266.1	P. vivax	Nigeria
MK131267.1	P. vivax	Nigeria
MK131268.1	P. vivax	Nigeria
MK131269.1	P. vivax	Nigeria
XR 005506393.1	P. knowlesi	Not reported

Appendix Figure 1. Photograph of myocardium at 400×, with Hematoxylin & Eosin staining, shows hypertrophic cardiomyocytes; abundant parasitic structures compatible with trophozoites are recognized in capillary lumens. The magnification image highlights the presence of intracellular parasites.

Appendix Figure 2. Photograph of brain tissue at 400×, with Hematoxylin & Eosin staining, showing vacuolization of the neuropil, multiple parasitic structures in capillary lumens compatible with trophozoites.