Article DOI: https://doi.org/10.3201/eid3113.241227

EID cannot ensure accessibility for supplementary materials supplied by authors. Readers who have difficulty accessing supplementary content should contact the authors for assistance.

Integrating Genomic Data into Public Health Surveillance for Multidrug-Resistant Organisms, Washington, United States

Appendix 2

Report Sample

The following pages show an example of our automated summary report with mock-up data (https://github.com/NW-PaGe/BacterialGenomicsSummaryOutput). The report contains tables that summarize key details about the genomic clusters identified through BigBacter (https://github.com/DOH-JDJ0303/bigbacter-nf) such as the total number of sequences in each cluster, number of new sequences added to previously identified clusters, names of submitting health facilities and submitting counties, and which sequences show evidence of close linkage. The report is shared along with genomic interpretations and Microreact files.

Bacterial Genomics - Summary Report

AUTHOR Molecular Epidemiology Program, WA DOH PUBLISHED

November 22, 2024

Overview New Samples

There are 2 new sequencing results in this Big Bacter run.

This is the mapping of the sequencing ID to the corresponding case ID.

ID	WA_ID	CASE_ID
Sample c	WA000000	10000000
Sample e	WA999999	10999999

The new isolates were classified by Big Bacter as follows:

ID	QUAL	TAXA	GENOMIC CLUSTER	ISO IN CLUSTER	ISO PASS QC
Sample c	PASS	Kleb sie lla_pne umoniae	8	6	6
Sample e	PASS	Pseudomonas aeruginosa	17	1	1

Of those, the following isolates resulted in new genetic clusters.

ID	QUAL	TAXA	GENO MIC CLUSTER	ISO IN CLUSTER	ISO PASS QC
Sample e	PASS	Pseudomonas_aeruginosa	17	1	1

Failed Isolates

The following isolates failed quality control.

There weren't any isolates that failed quality control in this run

Recombination

Bacterial recomb ination is the process where bacteria exchange genetic material with each other which leads to the gain of new DNA sequences into their genomes. It is important to be aware of recomb ination when conducting genomic analyses because recomb ination events can be confused with mutations events which can impact metrics used to characterize relationships between sequences, such as calculating single nucleotide polymorphisms (SNP) distances. The bioinformatics pipelines developed at WA PHL use Gubb ins, a method to detect and control for recomb ination. If recomb ination is detected the sites where recomb ination is present are masked in the SNPs distance calculations and in the phylogenetic trees.

We evaluate recombination in multiple ways. First the number of sites where recombination was detected is divided by the total length of the core genome. If recombination is more than 5% in a genomic cluster the Gubbins outputs are used. If recombination is more than 1% but less than 5%, then the Snippy and Gubbins outputs are reviewed jointly to see if they yield different interpretations. If the interpretations differ, then most likely we will use the Gubbins for the genomic interpretations.

TAXA	GENOMIC CLUSTER	MAX_%Recomb_Detected	
Klebsiella_pneumoniae		8	4.373

Sequences that resulted in new genetic clusters are excluded from this calculation.

SNP Min and Max Distances

The minimum and maximum SNP distances for each genomic cluster by each method, Snippy and Gubbins, are summarized below

Source	MAX	MIN
Klebsiella_pneumoniae-00008-core-snps_dist.gubbins-long	381	2

Klebsiella_pneumoniae-00008-core-snps_dist.snippy-long

2,454

3

Sequences that resulted in new genetic clusters are excluded from this calculation.

Genomic Linkages

Based on the SNP distances these are the strong (0-10 SNPs) and intermediate (11-50 SNPs) linkages found among the new isolate/s and other sequences in the corresponding genomic clusters.

$Klebsiella_pneumoniae-00008-core-snps_dist.gubbins-long$

ID	Strong Genetic Linkages (0-10 SNPs)	Intermediate Genetic Linkages (11-50 SNPs)
Sample c	Sample a	
Sample c	Sample b	

Kleb siella pneumoniae-00008-core-snps dist.snippy-long

ID	Strong Genetic Linkages (0-10 SNPs)	Intermediate Genetic Linkages (11-50 SNPs)
Sample c	Sample a	
Sample c		Sample b

Metadata

This is an overview of the metadata pertaining to each of the genomic clusters that contain new isolates. The facilities are the submitting facilities and the counties the submitting facilities' county.

Taxa_Genomic Cluster	Min Collection date	Max Collection date	All Counties	New Counties	All Facilities	New Facilities	All IDs	New IDs	ISOs Same Case
K_pneumoniae_8	10-16-22	07-11-24	County x	County x County z	Facility I Facility II Facility III	Facility III	a, c, f, g, h, i	С	DOB: 1-1-1999 g, h
P_aeruginosa_17	09-10-24	09-10-24	County x	County x	Facility II	Facility II	e	e	No isolates from the same case

Resources

The code to generate this report is available here:

https://github.com/NW-PaGe/BacterialGenomicsSummaryOutput

The following bioinformatics methods were used by WA PHL to generate some of the data summarized in this report.

Big Bacter bioinformatics pipeline https://github.com/doh-jdj0303/bigbacter-nf

Snippy https://github.com/tseemann/snippy

Gubbins https://github.com/nickjeroucher/gubbins