
Since its first detection in cattle in March 2024, high-
ly pathogenic avian influenza (HPAI) A(H5N1) vi-

rus has caused a multistate outbreak in dairy cows 
in the United States (1). The Eurasian lineage goose/
Guangdong H5 clade 2.3.4.4b virus has been endemic 
in the United States since winter 2021–22, causing the 
outbreak in dairy cows (2,3), and has caused a series 
of epizootic outbreaks in mammal species in the Unit-
ed States. (3,4). During the ongoing US dairy cow epi-
demic, zoonotic and cross-species spillovers of H5N1 
to farm workers and other mammalian and avian spe-
cies near dairy farms have occurred (5–7).

H5N1 virus replicates in mammary gland epi-
thelial cells of dairy cows. Replication inside the 
udder results in high viral titers of up to 108.8 50% 
tissue culture infectious dose per milliliter in milk 
from infected cows (8,9). Key drivers of cow-to-cow, 

zoonotic, and cross-species transmission might be 
through direct, environmental (through contami-
nated milk or wastewater streams), or surface (con-
taminated milking equipment) contact (10,11). To 
examine environmental and mechanical H5N1 virus 
transmission, we evaluated the stability of infectious 
H5N1 virus in irradiated raw milk and wastewater 
and on surfaces.

The Study
We assessed the decay rates and corresponding half-
lives of H5N1 virus in irradiated raw milk; on poly-
propylene, stainless steel, and rubber surfaces; and 
in irradiated wastewater from a treatment plant. We 
performed irradiation of raw milk and wastewater to 
avoid bacterial outgrowth that would prevent further 
downstream analyses because of cytotoxicity.

We spiked fresh, raw, gamma-irradiated cow 
milk and wastewater with HPAI H5N1 clade 2.3.4.4b 
virus isolated from the ongoing US dairy cattle out-
break (strain A/bovine/OH/B24OSU-342/2024). We 
tested samples of spiked fluids daily for 7 days. We 
deposited four 12.5-µL drops of spiked irradiated 
raw milk on stainless steel, polypropylene, and nitrile 
rubber disks to evaluate surface stability. We collect-
ed daily samples by rinsing the disks with minimal 
essential media tissue culture media and performed 
all experiments in triplicate by using biologic repli-
cates and quantifying endpoint titration on MDCK 
cells (Appendix, https://wwwnc.cdc.gov/EID/
article/31/4/24-1615-App1.pdf).
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We measured stability of infectious influenza A(H5N1) 
virus in irradiated raw milk and wastewater and on sur-
faces. We found a relatively slow decay in milk, indicating 
that contaminated milk and fomites pose transmission 
risks. Although the risk is low, our results call for caution 
in milk handling and disposal from infected cattle.
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We evaluated the stability of H5N1 virus in irra-
diated raw milk and on surfaces at 4°C and 22°C and 
in wastewater at 22°C. We inferred posterior distribu-
tions for virus decay rates and half-lives by using a 
Bayesian regression model. We report inferred values 
as the posterior median (95% credible interval [CrI]).

In irradiated raw milk, we measured a virus 
half-life of 2.1 (95% CrI 1.5–3.4) days at 4°C and 0.74 
days (95% CrI 0.60–0.96) at 22°C (Figure 1). The time 
needed for a 10 log10 reduction in virus titer was 69 
(95% CrI 51–112) days at 4°C and 24 (95% CrI 20–32) 
days at 22°C. Those results underline the potential 
of H5N1 virus to stay infectious in milk for multiple 
weeks, especially if the milk is refrigerated, if the ini-
tial titer is sufficiently high.

We studied surface stability of H5N1 virus on 
stainless steel, polypropylene, and rubber surfaces at 
4°C with 80% relative humidity and at 22°C with 65% 
relative humidity. At 4°C, we measured a half-life of 
1.4 (95% CrI 1.1–2.1) days on polypropylene, 1.2 (95% 
CrI 1.0–1.7) days on stainless steel, and 0.51 (95% CrI 
0.45–0.59) days on rubber. At 22°C, we measured 
half-life values of 0.11 (95% CrI 0.08–0.14) days (2.5 
[95% CrI 1.6–3.4] hours) on polypropylene, 0.14 (95% 
CrI 0.11–0.18) days (3.3 [95% CrI 2.5–4.3] hours) on 
stainless steel, and 0.14 (95% CrI 0.12–0.16) days (3.31 
[95% CrI 2.86–3.87] hours) on rubber (Figure 2). Decay 
rates of infectious H5N1 virus were comparable on 
stainless steel and polypropylene surfaces but were 
≈10 times faster at 22°C (room temperature) than at 
4°C. Stability on rubber material was no different at 
22°C but lower at 4°C compared with polypropylene 

or stainless steel. A 10 log10 reduction in infectious vi-
rus titer was achieved at 4°C after 45 (95% CrI 35–62) 
days on polypropylene, after 40 (95% CrI 32–57) days 
on steel, and after 16.95 (95% CrI 15.07–19.64) days on 
rubber. In comparison, at 22°C, the 10 log10 decrease 
took 3.6 (95% CrI 2.7–4.6) days on polypropylene, 
4.7 (95% CrI 3.7–5.9) days on stainless steel, and 4.59 
(95% CrI 3.96–5.36) days on rubber.

In wastewater at 22°C, the half-life of infectious 
H5N1 virus was 0.48 (95% CrI 0.42–0.56) days (Figure 
3). A 10 log10 reduction of infectious virus in waste-
water took 16 (95% CrI 14–19) days if stored at 22°C.

Conclusions
We investigated the environmental persistence of in-
fectious H5N1 virus in irradiated milk, on contami-
nated surfaces, and in irradiated wastewater. For ir-
radiated raw milk and surface stability, we tested 
refrigerator (4°C) and room temperature (22°C) set-
tings. H5N1 virus showed high stability and a mono-
phasic, exponential decay pattern in all experiments. 
Refrigeration led to slower virus inactivation (12). 
Inactivation of the virus was slower in milk than in 
wastewater, possibly because of stabilization arising 
from milk’s high protein content, similar to mpox 
virus, where increasing protein content has been re-
ported to improve stability (13). However, previous 
experiments were conducted in virus-spiked irradi-
ated milk and wastewater (13), and the effect of mi-
croorganisms was not investigated.

Based on the estimated inactivation rate and high 
virus titer of 108 50% tissue culture infectious dose per 
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Figure 1. Results of experimental 
testing of highly pathogenic 
avian influenza A(H5N1) virus 
stability in irradiated raw milk and 
wastewater, United States. A, B) 
Virus stability in irradiated raw milk 
at (A) 4°C and (B) 22°C. C) Virus 
stability in irradiated wastewater 
at 22°C (orange). Vertical lines 
represent random draws from the 
joint posterior distribution of the 
exponential decay rate and the 
initial virus titer, where the intercept 
of each line is the initial titer and 
the slope is the negative of the 
decay rate. Dashed horizontal lines 
show 100.5 TCID50/mL of medium 
and represent the approximate 
detection limit. Individual data 
points are represented as circles 
(above limit of detection) or 
triangles (below limit of detection). 
TCID50, 50% tissue culture 
infectious dose.
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milliliter (detected during the current outbreak) (8), 
detectable quantities of infectious virus could theo-
retically persist in refrigerated irradiated raw milk 
for 45 (95% CrI 33–73) days. On surfaces, we did not 

find substantial differences in virus stability among 
exposure to stainless steel, polypropylene, or rubber 
at 22°C but detected a high dependency on tempera-
ture. Another study comparing H5N1 virus surface 
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Figure 2. Results of experimental testing of highly pathogenic avian influenza A(H5N1) virus stability on surfaces, United States. Surface 
stability of infectious H5N1 in milk at 4°C (blue) and 22°C (orange) was tested on polypropylene (A), stainless steel (B), and nitrile rubber 
material (C). Vertical lines represent random draws from the joint posterior distribution of the exponential decay rate and the initial virus 
titer, where the intercept of each line is the initial titer and the slope is the negative of the decay rate. The dashed horizontal lines are at 
100.5 TCID50/mL of medium and represent the approximate limit of detection. Individual data points are represented as circles (above limit 
of detection) or triangles (below limit of detection). TCID50, 50% tissue culture infectious dose.

Figure 3. Violin plots showing results of experimental testing of highly pathogenic avian influenza A(H5N1) virus stability in irradiated 
raw milk and wastewater and on surfaces, United States. Plots show the posterior distribution of the half-life of viable virus at each 
condition, determined from the estimated decay rates. Viral decay was calculated for H5N1 virus in irradiated raw milk at 22°C and 4°C, 
in irradiated wastewater at 22°C, and on polypropylene, steel, and rubber surfaces at 22°C and 4°C. The point at the center of each 
violin is the posterior median estimate, and the vertical black bars show 95% credible intervals (2.5%–97.5%).
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stability on stainless steel and rubber from milking 
equipment found comparable virus stability between 
the 2 surfaces, underlining the potential risk for fomi-
te transmission (10). The half-life of 0.48 (95% CrI 
0.42–0.56) days (12 [95% CrI 10–13] hours) in waste-
water shows persistence on a time scale that may lead 
to exposure of humans or animals when in contact 
with contaminated wastewater or surface water.

The relatively high stability of H5N1 virus we re-
port, combined with reports of high H5N1 virus titers 
in milk from infected cows, highlights the potential 
for virus transmission by contaminated milk or fomi-
tes. That high stability is consistent with postulated 
cow-to-cow transmission during the milking process 
and exposure to infected cattle herds, leading to in-
fections in dairy workers and other animal species 
at affected dairy farms. Furthermore, the high virus 
titers in milk pose a serious risk for transmission to a 
poultry industry that neighbors dairy farms or dairy 
processing sites. Previous studies on avian H5N1 
and H1N1 viruses reported the same prolonged en-
vironmental stability described here for bovine HPAI 
H5N1 virus (10,14). In addition, although wastewa-
ter transmission risk appears to remain low, detec-
tion of H5N1 sequences in wastewater during weekly 
wastewater sampling in 10 urban areas throughout 
Texas suggested widespread H5N1 genetic material 
in wastewater in states affected by the outbreak in 
dairy cattle (15).

In conclusion, our results indicate low H5N1 
virus infection risk through wastewater but higher 
potential risk from exposure to contaminated milk. 
Research into transmission risk through different 
pathways and the probability of infection arising 
from different doses and routes of exposure to 
H5N1 is ongoing, but our results call for particu-
lar caution in handling and disposing of milk from  
infected cattle.

This article was preprinted at https://www.biorxiv.org/
content/10.1101/2024.10.22.619662v1.
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