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The complex interaction between a microbial
pathogen and a host is the underlying basis of
infectious disease. By understanding the molecu-
lar details of this interaction, we can identify
virulence-associated microbial genes and host-
defense strategies and characterize the cues to
which they respond and mechanisms by which
they are regulated. This information will guide
the design of a new generation of medical tools.

Genomic sequencing will provide the data
needed to unravel the complexities of the host-
pathogen interaction. As of August 10, 2000, draft
sequence was available for 87% of the human
genome (http://www.ncbi.nlm.nih.gov/genome/
seq/), and at least 39 prokaryotic genomes,
including those of more than a dozen human
pathogens, had been completely sequenced
(http://www.tigr.org/tdb/mdb/mdbcomplete.html).
The pace of gene discovery rapidly accelerates,
but its potential for explaining life at the
molecular level remains largely unrealized because
our understanding of gene function lags increas-
ingly far behind. For example, even in the heavily
studied Escherichia coli, no function has been

assigned to more than one third of its genes (1).
High-throughput methods for assessment of
function are clearly required if this wealth of
primary sequence information is to be used.

Global profiling of gene expression is one
attractive approach to assessing function.
Because a gene is usually transcribed only when
and where its function is required, determining
the locations and conditions under which a gene
is expressed allows inferences about its function.
Several independent high-throughput methods
for differential gene expression (including SAGE
and differential display) may enable function
annotation of sequenced genomes (2). DNA
microarray hybridization analysis stands out for
its simplicity, comprehensiveness, data consis-
tency, and high throughput.

Transcription control plays a key role in host-
pathogen interaction (3,4); thus, genomewide
transcription profiling seems particularly appro-
priate for the study of this process. This review
focuses on microarray-based approaches for
studying transcription response because they
hold exceptional promise for the study of
infectious disease. Microarray-based genotyping
applications, although expected to make substan-
tial contributions in this field, are covered only
briefly here.
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Complete genomic sequences of microbial pathogens and hosts offer sophisticated
new strategies for studying host-pathogen interactions. DNA microarrays exploit
primary sequence data to measure transcript levels and detect sequence
polymorphisms, for every gene, simultaneously. The design and construction of a DNA
microarray for any given microbial genome are straightforward. By monitoring microbial
gene expression, one can predict the functions of uncharacterized genes, probe the
physiologic adaptations made under various environmental conditions, identify
virulence-associated genes, and test the effects of drugs. Similarly, by using host gene
microarrays, one can explore host response at the level of gene expression and provide
a molecular description of the events that follow infection. Host profiling might also
identify gene expression signatures unique for each pathogen, thus providing a novel
tool for diagnosis, prognosis, and clinical management of infectious disease.
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High-Density DNA Microarrays:
Basic Tools

First described in 1995 (5), high-density DNA
microarray methods have already made a
marked impact on many fields, including cellular
physiology (6-11), cancer biology (12-17), and
pharmacology (18,19). The first results of gene
expression profiling of the host-pathogen interac-
tion have just begun to emerge. Before exploring
these results, we briefly review the methods.

Technology
The key unifying principle of all microarray

experiments is that labeled nucleic acid molecules
in solution hybridize, with high sensitivity and
specificity, to complementary sequences immobi-
lized on a solid substrate, thus facilitating parallel
quantitative measurement of many different
sequences in a complex mixture (20,21). Although
several methods for building microarrays have
been developed (22,23), two have prevailed. In
one, DNA microarrays are constructed by
physically attaching DNA fragments such as
library clones or polymerase chain reaction
(PCR) products to a solid substrate (5) (Figure 1).

By using a robotic arrayer and capillary printing
tips, we can print at least 23,000 elements on a
microscope slide (P. Brown, pers. comm.; Figure
2). In the other method,  arrays are constructed
by synthesizing single-stranded oligonucleotides
in situ by use of photolithographic techniques
(24,25). Advantages of the former method include
relatively low cost and substantial flexibility
(which explain its wide implementation in the
academic setting); in addition, primary sequence
information is not needed  to print a DNA
element. Advantages of the latter method include
higher density (>280,000 features on a 1.28X1.28-
cm array) and elimination of the need to collect
and store cloned DNA or PCR products.
Continued commercial interest in microarray
technology promises increasing array element
density, better detection sensitivity, and cheaper,
faster methods. Technical descriptions of mi-
croarray construction methods and hybridization
protocols are available (26-28; and http://
cmgm.stanford.edu/pbrown/mguide/index.html).

Messenger RNA from eukaryotic cells is
usually specifically labeled by affinity purifica-
tion of mRNA with an oligo-dT resin, followed by

Figure 1. Measuring relative gene expression by
using DNA microarrays. Capillary printing is used to
array DNA fragments onto a glass slide (upper right).
RNA is prepared from the two samples to be compared,
and labeled cDNA is prepared by reverse transcrip-
tion, incorporating either Cy3 (green) or Cy5 (red)
(upper left). The two labeled cDNA mixtures are mixed
and hybridized to the microarray, and the slide is
scanned. In the resulting pseudocolor image, the green
Cy3 and red Cy5 signals are overlaid—yellow spots
indicate equal intensity for the dyes. With the use of
image analysis software, signal intensities are
determined for each dye at each element of the array,
and the logarithm of the ratio of Cy5 intensity to Cy3
intensity is calculated (center). Positive log(Cy5/Cy3)
ratios indicate relative excess of the transcript in the
Cy5-labeled sample, and negative log(Cy5/Cy3) ratios
indicate relative excess of the transcript in the Cy3-
labeled sample. Values near zero indicate equal
abundance in the two samples. After several such
experiments have been performed, the dataset can be
analyzed by cluster analysis (bottom). In this display,
red boxes indicate positive log(Cy5/Cy3) values, and
green boxes indicate negative log(Cy5/Cy3) values,
with intensity representing magnitude of the value.
Black boxes indicate log(Cy5/Cy3) values near zero.
Hierarchical clustering of genes (vertical axis) and
experiments (horizontal axis) has identified a group of
coregulated genes (some shown here) and has divided
the experiments into distinct classes.
(Illustration by J. Boldrick, Stanford University.)
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incorporation of dye-labeled nucleotides into
cDNA molecules by reverse transcriptase (RT)
with random or oligo-dT oligonucleotide primers
(Figure 1). In prokaryotes, the absence of
polyadenylation on transcripts makes labeling of
mRNA more difficult. One method is labeling of
total RNA either by covalent linkage (29) or by
incorporating dye-labeled nucleotides into comple-
mentary DNA through RT and random oligo-
nucleotide primers (30). In spite of the high copy
number of labeled ribosomal and tRNA molecules
in the hybridization reaction, specific hybridiza-
tion of mRNA to the array can be achieved under
appropriate stringency. An alternative method is
to prime reverse transcription with a mixture of
reverse-strand oligonucleotides specific for open
reading frames (ORFs), either those used to
construct the microarray (M. Laub and L.
Shapiro, pers. comm.) or a minimally complex
mixture of octamers sufficient to hybridize to the
3' end of every ORF (31). This method results in
higher signal-to-noise ratios by preferentially
synthesizing cDNA from coding regions.

For printed DNA microarrays, relative
transcript abundance is measured by labeling
two samples with different fluorescent dyes (e.g.,
Cy3 and Cy5), hybridizing them simultaneously,

and determining the fluorescence ratio for each
spot on the array (Figure 1). On oligonucleotide
arrays, multiple probes from the same gene, each
with a corresponding mismatch probe that serves
as internal control, as well as labeled transcript
of known amounts for standard genes makes
quantitative measurement of transcript abun-
dance possible after hybridizing a single labeled
sample (25). For both techniques, use of
fluorescent labeling enhances sensitivity and the
dynamic range of measurement.

Gene expression array experiments can also
be performed by hybridizing a single labeled
mRNA sample to “macroarrays” of DNA elements
on positively charged filters (10,11,32-34).
Because this format does not require any
special arraying or scanning equipment,
specialty arrays can be made and analyzed
relatively cheaply. Human, mouse, and micro-
bial macroarrays are also commercially avail-
able (SigmaGenosys, The Woodlands, TX;
Research Genetics, Huntsville, AL; Clontech
Laboratories, Palo Alto, CA; Genome Systems,
St. Louis, MO).  The major disadvantages of
this format are reduced sensitivity (32),
limited elements, and the need for higher
concentrations of labeled cDNA.

Figure 2. DNA mi-
croarray—Lympho-
chip. (Center) Lym-
phochip version 8.0,
printed on a coated
glass microscope slide
using a 32-tip printing
head, contains 17,856
cDNA clones (over-
head illumination)
(14). (Left) U.S. penny,
for scale. (Right)
Scanned image dem-
onstrating differential
hybridization of Cy3-
and Cy5-labeled cDNA
to this microarray.
(Illustration by A. Aliza-
deh, M. Eisen, and P.
Brown, Stanford Univer-
sity; and L. Staudt, Na-
tional Cancer Institute.)
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Microarray Data Analysis
Microarrays are likely to become a standard

tool of the microbiology laboratory. However,
because genomewide datasets are large and
comprehensive, analysis of an experiment can
become daunting. Careful experimental design
can simplify analysis and interpretation of the
dataset by minimizing the number of variables
that affect gene expression. For example, strain
differences can be minimized by using isogenic
mutants, tissue complexity can be reduced by
studying clonal cell lines, and complex regulatory
pathways can be tamed by experimental modula-
tion of transgene expression (6).

Because microarray experiments result in
such large amounts of data, false-positive results
are likely. Analyzing multiple independent
experiments may eliminate spurious results (32).
Also important is validation of differentially
expressed genes by independent methods.  When
checked by a number of methods including
quantitative RT-PCR (6, 35), Northern blotting
(33, 34, 36), and protein expression (33, 34), most
differentially expressed genes have been con-
firmed. For example, 72 of 72 mRNAs found to be
regulated in response to cytomegalovirus (CMV)
infection were confirmed by either  prior reports
or Northern blotting (37). Future challenges for
microarray researchers will include developing
databases and algorithms to manage and analyze
vast genomic-scale datasets.

Image Analysis Software
The first step after hybridization is capturing

an image of the array and from it, extracting
numerical data for each element (Figure 1).
Several software applications, including those
packaged with most commercial scanners, can
perform this task. However, not all programs use
the same algorithms to calculate signal intensity,
and each of the programs exports a different
constellation of signal quality measurements,
complicating comparisons between data acquired
with different applications (38). If gene expres-
sion datasets are to be compared, these
measurements must be standardized. Further-
more, standard, robust statistical methods must
be developed for assigning significance values to
gene expression measurements.

Databases
Although many laboratories are now capable

of collecting microarray data, few have access to a

database that can effectively meet their data
requirements. With considerable investment of
resources, a few full-featured, relational gene ex-
pression databases have been developed, but
these are not available for public deposition of
data (e.g., http://genome-www4.stanford.edu/Mi-
croArray/MDEV/index.html;  http: / /www.
nhgri.nih.gov/DIR/LCG/15K/HTML/dbase.html).
Recently released, the freely available AMAD
software package (http://www.microarrays.org/
software.html) provides basic microarray data
storage and retrieval capabilities to the average
laboratory.

A grander goal for the community is
establishing a consolidated resource for public
distribution of microarray data (39-41). Again,
the lack of a standard format for microarray data
interferes with creating such a resource (38,39).
The European Bioinformatics Institute, recog-
nizing this obstacle, has proposed defining a
standard based upon XML, a computer markup
language that combines data and formatting in a
single file for distribution over the World-Wide
Web (40; http://www.ebi.ac.uk/arrayexpress/).

Algorithms
Inferring biologically meaningful informa-

tion from microarray data requires sophisticated
data exploration. Most global gene expression
analyses have used some form of unsupervised
clustering algorithm (16,42-44) to find genes
coregulated across the dataset (Figure 1). A
primary justification for this approach is that
shared expression often implies shared func-
tion (38,43). In datasets containing many
experiments, clustering can also group experi-
ments on the basis of gene expression profiles, an
approach that has been successful in classifying
tumor-derived cell lines (19, 45) and tumor
subtypes (12-17).

When a coregulated class of genes is known,
supervised clustering algorithms, which are
trained to recognize known members of the class,
can assign uncharacterized genes to that class.
For example, a machine-learning method known
as a support vector machine has been used to
classify yeast genes by function on the basis of
shared regulation (46). Robust determination
of coregulated gene clusters may be achieved by
using a tiered approach: unsupervised cluster-
ing to identify coregulated genes followed by
testing and refinement with supervised algo-
rithms (47).
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Although clustering algorithms will continue
to be a mainstay in the analysis of gene
expression datasets, a wealth of other data-
mining techniques have yet to be applied (38,48).
Preliminary reports indicate that many algo-
rithms and visualization methods are being
developed, but their ability to extract biologic
insight has yet to be established (49-51).

The study of microbial pathogens, and
prokaryotes in general, will require the develop-
ment of some specialized analysis tools. First, the
compact and modular structure of prokaryotic
genomes—and in particular, the presence of
operons and pathogenicity islands—suggests
that important insights may be gained by
mapping gene expression information onto
genomic structure. In addition, because gene
expression will be measured in many different
pathogens, often under the same environmental
conditions, tools for cross-species comparison of
gene expression data will permit the detection of
conserved transcription responses.

Examining a Microorganism:
Application of DNA Microarrays

Microarray technology promises to speed the
study of uncharacterized or poorly characterized
microbes by contributing to annotation of the
microbial genome, enabling exploration of
microbial physiology, and identifying candidate
virulence factors.

Designing a Microbial Genome Microarray
Designing a whole-genome DNA microarray

for a fully sequenced microbe is conceptually
straightforward. Several sensitive microbial
gene-finding programs can quickly and accu-
rately predict most ORFs (52-57). DNA frag-
ments representing each of the ORFs can be
obtained by PCR amplification that uses ORF-
specific oligonucleotides, the design of which can
be automated with primer design software such
as Primer3 (58). Homology-searching algorithms
should be used to choose regions of genes that will
not cross-hybridize with other regions of the
genome. After a simple purification step, PCR
fragments can be arrayed by a robotic arrayer (5).
This basic approach has been used to construct a
4,290-ORF E. coli microarray (10, 11) and a
3,834-ORF Mycobacterium tuberculosis
microarray (30) as well as full-genome arrays for
Helicobacter pylori (S. Falkow, pers. comm.) and
Caulobacter crescentus (L. Shapiro, pers. comm.).

Microarray fabrication based on photolitho-
graphic synthesis of oligonucleotides in situ is
also a viable approach and has been successfully
used for the production of an E. coli complete
ORF chip (E. coli Genome Array, Affymetrix,
Santa Clara, CA).

The utility of microarrays is not restricted to
fully sequenced organisms. A powerful screening
tool can be obtained by arraying DNA libraries,
as has been done for the eukaryotic pathogen,
Plasmodium falciparum (59). A DNA microarray
of 3,648 random genomic clones was used to
identify >50 genes for which expression differed
significantly between the trophozoite and gameto-
cyte stages. The major limitation of this approach
is that the identity of any element of interest
must be determined after the experiment.

Annotating the Function
of a Microbial Genome

For many pathogens, the number of genes for
which function information is available is usually
low. Moreover, the relative insufficiency of
genetic tools can make obtaining such informa-
tion difficult. However, because >70% of bacterial
proteins have orthologs in other organisms
(60,61), one can leverage extensive knowledge of
function from the model organisms to infer
function for a pathogen’s genome. Similarity
searches alone will predict functions of many genes.

We expect the study of genomewide
expression patterns to contribute even further to
annotation of function. The rationale for this
belief follows from the observation that shared
expression often implies shared function (38). As
suggested by Brown and Botstein (21), the
inclusion of a gene with a characterized ortholog in
a coregulated gene cluster can predict the function
of the remaining genes in that cluster, thus boot-
strapping the function annotation of the
pathogen’s genome. This assertion is borne out in
a study of global gene expression in Saccharomy-
ces cerevisiae. Clustering of 2,467 gene expres-
sion profiles across a series of 78 experiments
representing eight cellular processes demon-
strated coregulation of genes that participated in
shared cellular function (43). Therefore, the
acquisition of a pathogen’s gene expression data
from even a modest number of experimental
conditions may lead to testable hypotheses about
function for a substantial number of genes, even
those lacking sequence similarity to genes whose
function has been characterized.
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Probing a Microbe’s Physiologic State
The assumption that genes are preferentially

expressed when their function is required allows
inference of gene function directly from physi-
ologic gene response. For example, genes
preferentially transcribed during the diauxic
shift in yeast are predicted to contribute in the
metabolic transition to respiration (9). Thus,
gene expression studies will contribute to
function annotation by identifying the specific
environmental and physiologic conditions in
which each gene is expressed. Furthermore, as
annotation improves, the direction of this
inference may be reversed, i.e., if information on
function is known for many genes, genomic
expression profiling may reveal the physiologic
state of the organism.

Two studies have used whole-genome DNA
arrays to explore gene expression response to
environmental stimuli in E. coli. First, treatment
with isopropyl-ß-D-thiogalactopyranoside (IPTG)
was shown to induce only the lac operon, and to a
lesser extent, the melibiose operon (11). In a
second study, comparison of strains grown in
minimal versus rich media revealed 344 genes
that were differentially expressed between the
two conditions: preferential expression of the
translation apparatus in rich media and the
amino acid biosynthetic pathways in minimal
media were entirely consistent with prior data
(10). Finally, examination of gene expression
during heat shock revealed 119 genes with
altered expression levels, all but 35 of which were
previously recognized as heat shock genes (11).
These studies confirm that the physiologic
state of bacteria can be inferred from gene
expression data.

In the first report of global gene expression
monitoring in a bacterial pathogen, oligonucle-
otide microarrays were used to measure the
relative transcript levels of 100 Streptococcus
pneumoniae genes during the development of
natural competence and during stationary
phase (29). The results confirmed induction of
the cin operon and identified 11 genes
differentially regulated in stationary versus
exponential phase. Of course, gene expression
monitoring is not restricted to the study of
bacterial pathogens. Transcription of the CMV
genome was measured during infection by using
an array of 75-mer oligonucleotides representing
each of the 226 predicted CMV ORFs (62). By
blocking translation or DNA replication, the

researchers revealed a detailed classification of
CMV genes into four kinetic classes, in
agreement with previous reports, and assigned
many ORFs, for which expression data were not
previously available, into these groups.

Identifying Candidate Virulence Factors
Because expression of virulence-associated

genes is tightly regulated (4), measuring a
pathogen’s gene expression in microenviron-
ments specific to the pathogen and germane to
the disease process is critical. Exploration of
pathogen gene expression in the host environ-
ment may be technically challenging because of
the relatively small number of pathogens present
in an infected animal (29). Until more sensitive
detection protocols are developed,  examining
global gene expression will be more practical in
environmental conditions that mimic aspects of
the host environment, such as elevated tempera-
ture, iron limitation, and changes in pH (4, 63)
and in cell culture models. In fact, a microarray
has been used to monitor gene expression in
M. tuberculosis while it infects cultured
monocytes (64). Even after measurement of
bacterial gene expression from infected hosts
becomes feasible, the ex vivo datasets will
facilitate deconstruction of the in vivo gene
expression response into component responses,
leading to detailed understanding of the
pathways of virulence factor regulation.

Identifying candidate virulence factors through
a global gene expression method relies on two
assumptions. First, because virulence-associated
genes are often coordinately regulated (4), new
virulence factors are likely to be coregulated with
known ones. By clustering gene expression
profiles across a large number of conditions, we
can precisely monitor coregulation, thus reveal-
ing subtleties of regulation and leading to the
identification of bona fide regulons. Second,
because virulence-associated genes are tightly
regulated (4), genes that are specifically
expressed during infection or under conditions
mimicking infection are candidate virulence
factors. This assumption has been justified by
numerous studies using in vivo expression
technology (IVET) and differential fluorescence
induction (DFI), in which genes induced during
infection are often required for virulence (4, 65).
When RNA from in vivo microbial samples can be
efficiently isolated and labeled, microarrays will
provide substantial advantages over IVET and



Vol. 6, No. 5, September–October 2000 Emerging Infectious Diseases519

Genomics

DFI technologies for identifying putative viru-
lence factors, including immediate identification
of differentially expressed genes and detection of
temporal profiles of transcription induction and
repression. As is demanded for candidate genes
identified by any expression screening approach,
a role in pathogenesis must be confirmed by
mutation and subsequent assays of virulence.

By identifying factors expressed in the host,
microarray methods may also identify potential
vaccine targets. Furthermore, one could identify
candidate epitopes for vaccine development for
intracellular pathogens by predicting whether
genes that are preferentially expressed inside
host leukocytes will encode promiscuous human
leukocyte antigen class II ligands (66).

Gene expression studies may also reveal key
regulatory differences that lead to differing
virulence between closely related pathogen
strains. For example, variations in virulence of
Listeria monocytogenes serotypes have been
correlated with differential transcription of PrfA-
regulated virulence genes (67, 68). However,
because microarrays cannot measure expression
of genes that are absent from the reference
strain, genotypic differences such as horizontal
transfer of virulence factors will not be detectable
by this method.

Pharmacogenomics
Yet another application for microarrays is

the study of drug effects on microbial cellular
physiology, as revealed by global gene expression
patterns (69). This approach has been used to
identify drug-specific gene expression signatures
in yeast and human cells (18,19,70). Correlation
of gene expression with drug activity may
suggest molecular details of drug action, and
correlation of transcription profiles in untreated
cells with drug response may reveal mechanisms
for sensitivity and resistance (19).

This approach has recently been used to
characterize gene expression response in
M. tuberculosis exposed to known inhibitors of
the mycolic acid biosynthesis pathway, isoniazid
and ethionamide (30). Both of these compounds
elicited a similar gene expression response
profile, characterized by pronounced transcrip-
tion induction of five adjacent genes encoding
fatty acid biosynthesis enzymes. Because a
proven isoniazid target, KasA, was among
these genes, the authors proposed that the
adjacent, coregulated loci might be targets for

new anti-tuberculosis drugs. Finally, these
results suggested that the mode of action of a
novel compound may be inferred from gene
expression response to that compound.

Using microarrays to detect microbial
polymorphisms linked to known drug-resistance
phenotypes will also influence diagnosis and
subsequent drug treatment. For example, an
oligonucleotide array was used to detect mutant
alleles of the M. tuberculosis rpoB gene, which
are known to confer resistance to rifampicin (71).

Microbial Genotyping
One microarray application that interrogates

DNA rather than RNA is the identification of
genomic deletions in mutant strains and
environmental isolates by measuring the number
of DNA copies at each locus, a technique termed
array-based comparative genome hybridization
(72). This technique was used to identify several
large deletions in a number of BCG vaccine
strains and reconstruct their phylogeny (73).

Oligonucleotide arrays have also been used
for fine-scale genotyping of polymorphisms in
related pathogens. Accurate identification of
Mycobacterium species using a GeneChip
containing a set of 82 polymorphic oligonucle-
otides from the 16S ribosomal RNA gene
demonstrated the potential power of this
approach for molecular diagnostics (71). As
additional microbial genome ORF microarrays
become available, molecular surveys of the
genomic structure of multiple strains will become
far more precise and feasible. Two caveats should
be mentioned: the ability to characterize genome
insertions relative to the reference sequence is
lacking, and the degree to which sequence
variability can be characterized on the basis of
microarray hybridization is unknown.

Examining a Host: Application
of DNA Microarrays

Designing Microarrays for Host Organisms
The currently described human DNA

microarrays are largely composed of expressed
sequence tags (ESTs). Culling ESTs from many
different tissue sources and limiting representa-
tion of any single Unigene cluster (see http://
www.ncbi.nlm.nih.gov/UniGene/Hs.stats.shtml)
have resulted in better than 50% representation
of the predicted 80,000-100,000 human coding
regions (28). A variety of human DNA and
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oligonucleotide microarrays are available com-
mercially (e.g., Incyte, Palo Alto, CA; Affymetrix;
NEN Life Science Products, Boston, MA).

For in vivo studies of host response, infection
of animal models will often be necessary. If the
animal is a primate, human DNA microarrays
might be used to monitor host gene expression
because of  the high level of primary sequence
similarity between species. Sequence similarity
is too low to permit reliable cross-hybridization
with nonprimate vertebrates, but microarrays
composed of mouse and rat sequences have been
described (74) and are available (e.g., Incyte,
Affymetrix).

Understanding Pathogenesis
Microarrays promise to accelerate our under-

standing of the host side of the host-pathogen
interaction. A large fraction of the genome can be
simultaneously interrogated, and clustering of
the data may identify groups of genes that
implicate activation or repression of key
regulatory pathways. Microarrays also allow
the temporal sequence of transcription induc-
tion and repression to be followed, a prerequisite for
determining the order of events following an
encounter. Finally, ascertainment of the host cell’s
physiologic state, particularly apoptosis and
necrosis, by genomewide profiling will facilitate
separation of primary and secondary effects.

One important caveat of studying transcrip-
tion in any system is that post-transcription
regulatory events cannot be detected. This is
particularly important in the case of host
response because many important host cell
events, such as cytoskeletal rearrangements,
occur after transcription (75). Therefore, some
key aspects of the molecular program may not be
easily characterized by gene expression profiling.
Eventually, it may be possible to monitor
simultaneously the levels, activities, and interac-
tions of all proteins in the cell (76).

Although analyzing gene expression of
infected tissues is feasible, cellular heterogeneity
may make analysis of host response complicated.
Examining the response in infected cultured cells
by using cell types most likely to encounter the
pathogen may reduce the complexity of the
system being examined. Results obtained in cell
culture systems will be instrumental in inter-
preting gene expression profiles of specific cell
types from whole tissue datasets.

The first application of global gene expres-
sion methods to pathogenesis used oligonucle-
otide arrays to monitor gene expression in
primary human fibroblasts infected by human
CMV (37). The transcript abundance of 258 out of
6,600 human genes changed by more than
fourfold compared to uninfected cells at either 8
or 24 hours after infection. Some of these
changes, such as induction of cytokines, stress-
inducible proteins, and many interferon-induc-
ible genes, were consistent with induction of
cellular immune responses.

A similar experimental design has been used
to examine the global effects of HIV-1 infection on
cultured CD4-positive T cells. One study
concluded that HIV-1 infection resulted in
differential expression of 20 of the 1,506 human
genes monitored and that most of these changes
occurred only after 3 days in culture (36). In
contrast, the preliminary results of an indepen-
dent study using a similar design indicated that
substantial HIV-induced transcription changes
began very early after inoculation (77). The latter
study confirmed activation of nuclear factor-κB
(NF-κB), p68 kinase, and RNase L.

DNA expression arrays have recently been
used to examine the response of host cells to
infection by bacterial pathogens. Transcription
profiling of macrophages and epithelial cells
infected by Salmonella confirmed increased
expression of many proinflammatory cytokines
and chemokines, signaling molecules, and
transcription activators and identified several
genes previously unrecognized to be regulated by
infection (33,34). The macrophage study demon-
strated that exposure to purified Salmonella
lipopolysaccharide resulted in a very similar
response profile to whole cells and that activation
of macrophages with gamma interferon before
infection modified the response (34).  In epithelial
cells, overexpression of κB (an inhibitor of NF-
κB) blocked  induction of gene expression for a
number of regulated genes, underscoring the
importance of  NF-κB in the proinflammatory
response (33).

Similarly, the transcription response of human
promyelocytic cells to L. monocytogenes infection
has been determined by both oligonucleotide
arrays and filter-based arrays (32).  Comparison
of these data with the Salmonella infection
data suggests that the proinflammatory
response is grossly conserved: in both cases
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many key components including interleukin-1,
intercellular adhesion molecule-1, and macroph-
age inflammatory protein 1-β are induced.
Although differences were observed between the
two experiments, including induction of apoptosis-
promoting genes by Salmonella versus induction
of anti-apoptotic genes by L. monocytogenes, the
disparities between cell lines, methods, and
genes assayed in these reports make direct
comparison difficult. However, we speculate that
differences in pathogen virulence strategies may
account for some of these differences in host
response at the molecular level.

The initial reports demonstrate the potential
power of using microarrays to characterize host
response but also suggest that interpretation of
host gene expression profiles will be challenging.
For example, modulation of mRNAs encoding
components of the prostaglandin E2 biosynthetic
pathway suggested that CMV induced synthesis
of this proinflammatory second messenger (37).
The authors of this study proposed three
potential explanations for this observation: this
pathway could be induced by a cellular response
intended to limit spread of the infection by
promoting the killing of infected cells; viral
regulators could induce prostaglandin E2
production to lure monocytes, which could
subsequently be infected, leading to viral
dissemination within the host; and these genes
could be induced secondarily through induction
of interleukin-1β since a similar pattern of
regulation was observed in cells treated with that
cytokine. Microarrays can identify interesting
cellular events, but because expression patterns
cannot distinguish between these mechanisms,
the need for further investigation is obvious.

The experiments described above are strictly
exploratory and attempt to catalog the transcrip-
tion events that occur after an infection.
However, expression profiling also lends itself to
a more hypothesis-driven experimental design.
For example, comparison of host responses to
related strains of the same pathogen could
explain differences in pathogenesis. In fact,
comparison of gene expression in human
monocytes infected by two distinct strains of
Ebola virus, one infectious for humans and one
not, revealed divergent transcription responses
(78). Similarly, by examining responses to
isogenic mutant pathogen strains lacking single
virulence genes, or virulence factor-associated

biologic activities, one might attribute compo-
nents of the response to specific virulence
attributes, which in turn might yield mechanistic
insight into those virulence factors. Finally,
comparing transcription responses to families of
structurally related virulence factors, e.g.,
bacterial pore-forming toxins, may explain how
pathogens expressing similar virulence factors
can cause different pathologic responses.

Diagnostic Gene Expression Profiles
Most microarray-based gene expression

studies in humans have searched for genes that
are differentially expressed in various pathologic
states. For example, clustering gene expression
profiles can classify tumors into separate
molecular subtypes (12-17). In the case of diffuse
large B-cell lymphoma, two distinct molecular
classes exhibit substantially different survival
rates, suggesting that future clinical interven-
tion, at least in the case of cancer, could be guided
by diagnostic gene expression profiling (14).
Microarrays have also been used to measure the
response of cultured cells to distinct external
stimuli, including drugs (19) and environmental
toxins (79).

How can this paradigm be applied to the
diagnosis of infectious disease?  In collaboration
with Pat Brown (Stanford) and Lou Staudt
(National Cancer Institute), we hypothesize that
the unique constellation of virulence factors
expressed by a specific pathogen will elicit a
unique transcription response in the host (80). By
extension, the cascade of events leading to
inflammation and acquired immunity, including
secretion of mediators and subsequent cell-cell
interactions, might leave a unique trail of
transcription signatures in the leukocytes
participating in that response. Despite conserved
overall virulence strategies, microbial pathogens
exhibit specialization and unique attributes for
any given strategy at the molecular level (81).
Thus, by measuring the aggregate gene
expression pattern in peripheral blood mono-
nuclear leukocytes, for example, we may find
signatures diagnostic of infection by specific
pathogens or categories of pathogens.

The potential advantages of using host gene
expression signatures as diagnostic markers of
infection are profound. First, this technique
might permit early detection of exposure to
pathogens, even uncultivatable or uncharacterized
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pathogens. Second, variations in host signatures
could be used to infer time since exposure. Third,
because host response may continue in the
absence of the pathogen, this method might
detect exposure to pathogens that only tran-
siently colonize the host, are sequestered in
poorly accessed anatomic sites, or do not colonize
the host at all (e.g., Clostridium botulinum and
C. perfringens, in some cases). Finally, a single,
easily collected sample could be used for
diagnosing exposure to a wide array of agents.

Before the proposed method becomes an
accepted diagnostic tool, one must determine
whether exposure to a pathogen leads to a robust,
persistent, and specific gene expression signa-
ture in peripheral blood mononuclear leukocytes
and whether this signature is universal in
patients of different genetic backgrounds.
Experiments are under way in our laboratory to
assess the feasibility of this approach. Thus far,
identification of gene expression profiles common
to many different pathogens is leading to a more
detailed understanding of early events in the
development of immune response, and inflamma-
tion in particular, but the goal of these
experiments (to define unique signatures for
each pathogen) has not yet been realized.

Conclusion: The Two-Way Conversation
The few published studies reviewed here

represent what is certain to be the beginning of a
deluge of genome-scale pathogen data. At
Stanford University alone, microarray-based
studies of Bordetella pertussis, Salmonella,
H. pylori, Campylobacter jejuni, V. cholerae,
M. tuberculosis, and E. coli, as well as the
nonpathogenic microbes Streptomyces coelicolor
and C. crescentus, are under way (S. Falkow,
G. Schoolnik, S. Cohen, and L. Shapiro, pers.
comm.).

The longer term goals of functional genomics
and microarray technology in infectious diseases
include describing the host-pathogen interaction
in molecular detail and identifying critical target
molecules and pathways for diagnosis and
intervention. Realizing these goals will require
additional technology, extensive data collection,
sophisticated computational tools, and efforts to
discern cause and effect. We are on the verge of
being able to listen to the two-way conversation
between pathogen and host through devices of
immense power.
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