Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 20, Number 11—November 2014
Letter

Evidence of Evolving Extraintestinal Enteroaggregative Escherichia coli ST38 Clone

On This Page
Tables
Article Metrics
47
citations of this article
EID Journal Metrics on Scopus

Cite This Article

To the Editor: Several clones of extended-spectrum β-lactamase (ESBL)–producing extraintestinal pathogenic Escherichia coli (ExPEC) have globally expanded their distribution, including multilocus sequence types (MLSTs) ST38, ST131, ST405, and ST648 (1). ExPEC infections often originate from the patient’s own intestinal flora, although the degree of overlap between diarrheagenic E. coli and ExPEC pathotypes is unclear. Relatively little is known about antimicrobial drug resistance in the most common diarrheagenic E. coli groups, including enteroaggregative E. coli (EAEC), and bacterial gastroenteritis is generally managed without use of antimicrobial drugs.

The ability of diarrheagenic E. coli to cause extraintestinal infections has been shown in previous studies: a study among children in Nigeria linked EAEC to uropathogenic clonal group A (2), and a study in Brazil showed that EAEC markers were present in 7.1% of the E. coli isolates from urinary tract infections (3). Neither of these studies identified clonal lineages of EAEC specifically associated with extraintestinal infections.

We conducted this study to establish the presence and characteristics of ESBL-producing EAEC in a well-defined collection of ESBL-producing isolates (4). The isolates were from human and animal sources in Germany, the Netherlands, and the United Kingdom. The study was conducted at Public Health England during January–April 2013.

DNA from 359 ESBL isolates (4) was screened for the presence of the EAEC transport regulator gene (aggR), located on the EAEC plasmid, by using a real-time PCR assay and the following primers and probe: AggR_F 5′-CCATTTATCGCAATCAGATTAA-3′ AggR_R 5′-CAAGCATCTACTTTTGATATTCC-3′, AggR_P Cy5-CAGCGATACATTAAGACGCCTAAAGGA-BHQ. The amplification parameters were 50°C for 2 min, 95°C for 2 min, and 40 cycles at 95°C for 10 s and at 60°C for 20 s. Isolates positive for aggR were confirmed to be E. coli by using the Omnilog GenIII MicroPlate (Biolog, Hayward, CA, USA). Serotyping was done by using standard methods (5).

The phylogroup was determined for each isolate, and isolates were then assigned to 1 of the 4 major E. coli groups: A, B1, B2, and D (6). A microarray was used to detect ESBL genes, such as blaCTX-M, at the group level, as previously described (4). The antimicrobial drug susceptibilities of EAEC isolates were determined by using the agar incorporation method, as described in the British Society for Antimicrobial Chemotherapy guidelines (7).

Virulence factors associated with intestinal and extraintestinal infection (8) and with EAEC were investigated as previously described (9). We assigned a virulence score (total number of virulence factor genes detected; maximum possible score 22) and a resistance score (total number of drug classes; maximum score 11) to each isolate.

We isolated 11 EAEC from humans. Eight of the EAEC were isolated from urine specimens, and 1 was isolated from a blood culture; 63% belonged to phylogroup D (Table). EAEC ST38, the most common (55%) ST, was significantly associated with extraintestinal sites in the subset of 140 human isolates (Fisher exact test, p<0.0001).

In this study, we identified multidrug-resistant EAEC isolates belonging to ST38; the isolates had various somatic antigens and blaCTX-M genes (Table). The multiple somatic antigens, variety of antimicrobial drug–resistance scores, and variety of gene complements in this successful ST indicate multiple acquisitions of virulence markers, rather than clonal expansion from a single source (Table; Technical Appendix Figure).

In the MLST public database, which contained 5,143 E. coli entries in June 2013, ST38 is predominantly associated with urinary tract infections, but in-house MLST studies at the Gastrointestinal Bacteria Reference Unit, Public Health England, have shown that ST38 is a successful EAEC group. The presence of EAEC virulence factors, such as aggregative adherence fimbria AAFI and aggR, can mediate adherence of E. coli to bladder epithelial cells, but the virulence factors do not impart uropathogenic properties to all EAEC isolates (10). The ST38 strain described here probably originated from the gut and independently acquired the 2 phenotypes (uropathogenic E. coli [UPEC] and EAEC), which would suggest the emergence of a UPEC/EAEC hybrid strain. It seems likely that an ST38 E. coli strain adapted to EAEC plasmid carriage (a change that would help survival in the gut through increased adherence) has acquired UPEC virulence factors, facilitating the exploitation of an extraintestinal niche, the urinary tract.

Despite the characterization of numerous virulence factors, no single genetic feature currently defines EAEC or UPEC isolates. Because the EAEC ST38 strain had 4–7 ExPEC-associated virulence factors, we suggest that, on the basis of epidemiologic, microbiological, and molecular characteristics, the EAEC ST38 described in this study should be considered an ExPEC associated with uropathogenic infections. It is possible that the multidrug-resistant EAEC ExPEC group has expanded globally but is currently underreported. We therefore urge testing for the EAEC genotype in all clinical studies of E. coli pathotypes.

Our findings show the potential for EAEC, previously considered a gut pathogen, to cause extraintestinal infection. We suggest that the UPEC/EAEC pathotype may be an evolving clonal group. In particular, a single sequence type, ST38, was associated with multidrug resistance and with urinary tract infection in humans.

Top

Acknowledgments

We thank Dawn Hedges for serotyping the organisms, Andy Lawson for designing the aggR primers, Danielle Hall for help with PCR screening, and Daniele Meunier for her valuable insight.

This study was funded by the Public Health England Gastrointestinal Bacteria Reference Unit.

Top

Marie Anne ChattawayComments to Author , Claire Jenkins, Holly Ciesielczuk, Martin Day, Vivienne DoNascimento, Michaela Day, Irene Rodríguez, Alieda van Essen-Zandbergen, Anne-Kathrin Schink, Guanghui Wu, John Threlfall, Martin J. Woodward, Nick Coldham, Kristina Kadlec, Stefan Schwarz, Cindy M. Dierikx, Beatriz Guerra, Reiner Helmuth, Dik J. Mevius, Neil Woodford, John Wain, on behalf of the SAFEFOODERA
Author affiliations: Public Health England, Colindale, London, UK (M.A. Chattaway, C. Jenkins, H. Ciesielczuk, Martin Day, V. DoNascimento, Michaela Day, J. Threlfall, N. Woodford, J. Wain); Hospital Universitario Ramón y Cajal, Madrid, Spain (I. Rodríguez); University of East Anglia, Norfolk, UK (J. Wain); Federal Institute for Risk Assessment, Berlin, Germany (I. Rodríguez, B. Guerra, R. Helmuth); Central Veterinary Institute of Wageningen, Lelystad, the Netherlands (A. van Essen-Zandbergen, C. Dierikx, D. Mevius); Friedrich-Loeffler-Institut, Neustadt-Mariensee, Germany (A.-K. Schink, K. Kadlec, S. Schwarz); Animal Health and Veterinary Laboratories Agency, Weybridge, UK (G. Wu, M.J. Woodward, N. Coldham)

Top

References

  1. Pitout  JD. Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance. Front Microbiol. 2012;3:9.PubMedGoogle Scholar
  2. Wallace-Gadsden  F, Johnson  JR, Wain  J, Okeke  IN. Enteroaggregative Escherichia coli related to uropathogenic clonal group A. Emerg Infect Dis. 2007;13:75760. DOIPubMedGoogle Scholar
  3. Abe  CM, Salvador  FA, Falsetti  IN, Vieira  MA, Blanco  J, Blanco  JE, Uropathogenic Escherichia coli (UPEC) strains may carry virulence properties of diarrhoeagenic E. coli. FEMS Immunol Med Microbiol. 2008;52:397406. DOIPubMedGoogle Scholar
  4. Wu  G, Day  MJ, Mafura  MT, Nunez-Garcia  J, Fenner  JJ, Sharma  M, Comparative analysis of ESBL-positive Escherichia coli isolates from animals and humans from the UK, the Netherlands and Germany. PLoS ONE. 2013;8:e75392. DOIPubMedGoogle Scholar
  5. Gross  RJ, Rowe  B. Serotyping of Escherichia coli. In: Sussman M, editor. The virulence of Escherichia coli. Cambridge (UK): Cambridge University Press; 1985. p. 345–60.
  6. Clermont  O, Bonacorsi  S, Bingen  E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000;66:45558. DOIPubMedGoogle Scholar
  7. Howe  RA, Andrews  JM. BSAC standardized disc susceptibility testing method (version 11). J Antimicrob Chemother. 2012;67:27834. DOIPubMedGoogle Scholar
  8. Johnson  JR, Stell  AL. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis. 2000;181:26172. DOIPubMedGoogle Scholar
  9. Jenkins  C, Chart  H, Willshaw  GA, Cheasty  T, Smith  HR. Genotyping of enteroaggregative Escherichia coli and identification of target genes for the detection of both typical and atypical strains. Diagn Microbiol Infect Dis. 2006;55:139. DOIPubMedGoogle Scholar
  10. Boll  EJ, Struve  C, Boisen  N, Olesen  B, Stahlhut  SG, Krogfelt  KA. Role of enteroaggregative Escherichia coli virulence factors in uropathogenesis. Infect Immun. 2013;81:116471. DOIPubMedGoogle Scholar

Top

Table

Top

Cite This Article

DOI: 10.3201/eid2011.131845

Related Links

Top

Table of Contents – Volume 20, Number 11—November 2014

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.

Top

Comments

Please use the form below to submit correspondence to the authors or contact them at the following address:

Marie Anne Chattaway, Public Health England, Gastrointestinal Bacteria Reference Unit, Colindale, NW9 5EQ, UK

Send To

10000 character(s) remaining.

Top

Page created: October 20, 2014
Page updated: October 20, 2014
Page reviewed: October 20, 2014
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external