Volume 20, Number 3—March 2014
Letter
Bartonella henselae and B. koehlerae DNA in Birds
To the Editor: Bartonellosis, a globally emerging vector-borne zoonotic bacterial disease, is caused by hemotropic, gram-negative, aerobic, facultative intracellular Bartonella spp. (1). Of the 30 Bartonella species/subspecies, 17 have been associated with human infections (2,3). Each species has a reservoir host(s), within which the bacteria can cause intraerythrocytic bacteremia with few or no clinical signs of illness (1,3); the bacteria are transmitted by hematophagous arthropod vectors (1). Various Bartonella spp. have been identified in domestic and wild animals, including canids, deer, cattle, rodents, and marine mammals (1,4). Bartonella DNA from the blood of loggerhead sea turtles (Caretta caretta) has been PCR amplified and sequenced (5); the fact that Bartonella DNA was found suggests the possibility that persistent blood-borne infection can occur in nonmammals and that the host range for Bartonella spp. may be larger than anticipated.
Growing evidence suggests that wild birds play key roles in the maintenance and movement of zoonotic pathogens such as tick-borne encephalitis virus and Borrelia and Rickettsia spp. (6–9). Bartonella grahamii DNA was amplified from a bird tick in Korea (10). The substantial mobility, broad distribution, and migrations of birds make them ideal reservoir hosts for dispersal of infectious agents. To investigate whether birds might be a reservoir for Bartonella spp., we screened 86 birds for the presence of Bartonella spp. DNA.
The primary study site was a residential backyard in Morehead City, North Carolina, USA (34°43.722′N, 76°43.915′W). Of the 86 birds screened, 78 (16 species) were captured by mist net during March 2010–June 2012 and 8 (3 species) were injured birds that were to be euthanized (Table). Each bird was examined for external abnormalities and ectoparasites, weighed, measured, and tagged with a US Geological Survey–numbered band. A blood sample (0.10–0.25 mL) was collected from each bird by using a 1-mL insulin syringe with a 28-gauge × 1.27-cm needle. Blood remaining after preparation of blood smears was added to an EDTA tube and frozen (−80°C) until processed. Blood smears were examined for hemoparasites. Research was conducted under required state and federal bird banding permits and with the approval of the North Carolina State University Institutional Animal Care and Use Committee.
Before DNA was extracted from the samples, 10 μL of blood was diluted in 190 µL of phosphate-buffered saline. DNA was automatically extracted by using a BioRobot Symphony Workstation and MagAttract DNA Blood M96 Kit (QIAGEN, Valencia, CA, USA). Bartonella DNA was amplified by using conventional Bartonella genus PCR primers targeting the 16S–23S intergenic spacer region: oligonucleotides, 425s (5′-CCG GGG AAG GTT TTC CGG TTT ATCC-3′) and 1,000as (5′-CTG AGC TAC GGC CCC TAA ATC AGG-3′). Amplification was performed in a 25-μL reaction, as described (3). All PCR reactions were analyzed by 2% agarose gel electrophoresis. Amplicons were sequenced to identify the Bartonella sp. and intergenic spacer region genotype. To compare sequences with those in GenBank, we identified bacterial species and genotypes by using Blast version 2.0 (http://blast.ncbi.nlm.nih.gov/Blast.cgi). DNA extraction and PCR-negative controls remained negative throughout the study.
Results are summarized in the Table. None of the screened birds were anemic, but 5 were PCR positive for Bartonella spp. (3 for B. henselae and 2 for B. koehlerae). B. henselae was amplified from 2 Northern Mockingbirds (Mimus polyglottos) and 1 Red-winged Blackbird (Agelaius phoeniceus) (GenBank accession no. KC814161). The DNA sequences were identical to each other and had 99.6% (456/457 bp) sequence similarity with B. henselae San Antonio 2 intergenic spacer region genotype (GenBank accession no. AF369529). B. koehlerae was amplified from a Red-bellied Woodpecker (Melanerpes carolinus) and a Common Loon (Gavia immer) (GenBank accession no. KC814162). The DNA sequences were identical to each other (404/404 bp) and to GenBank sequence AF312490. Lice (Mallophaga order) were found on 5 Boat-tailed Grackles (Quiscalus major), but no ectoparasites were observed on Bartonella spp.–positive birds. Hemoparasites (Haemoproteus and Plasmodium spp.) were detected in 7 of 86 birds, indicating exposure to hematophagous ectoparasites, but hemoparasites were not detected in the Bartonella spp.–positive birds. No bacteria were visualized in Bartonella PCR–positive blood smears.
Bartonella spp. are increasingly associated with animal and human illnesses; thus, the identification of reservoirs and increased understanding of Bartonella spp. disease ecology are of public health importance. Our finding of 2 pathogenic species not previously reported in birds has expanded the potential sources for zoonotic infection.
There is growing evidence that migratory birds serve as reservoirs and/or mechanical vectors for pathogens such as tick-borne encephalitis virus and Rickettsia spp. (6–8). Birds have been implicated as reservoirs for several Borrelia spp. (9,10) and for possible dispersion of other tick-borne pathogens (e.g., Anaplasma and Bartonella spp.) (6,10). Tick transmission of Bartonella spp. to birds should be investigated, and additional studies that investigate the reservoir host range of Bartonella spp. and the transmission of these bacteria to non–host species will improve epidemiologic understanding of bartonellosis and will identify additional risk factors for Bartonella spp. transmission to new hosts, including humans.
References
- Biswas S, Rolain JM. Bartonella infection: treatment and drug resistance. Future Microbiol. 2010;5:1719–31. DOIPubMedGoogle Scholar
- Chomel BB, Boulouis HJ, Breitschwerdt EB, Kasten RW, Wayssier M, Birtles RJ, Ecological fitness and strategies of adaptation of Bartonella species to their hosts and vectors. Vet Res. 2009;40:29. DOIPubMedGoogle Scholar
- Maggi RG, Mascarelli PE, Pultorak EL, Hegarty BC, Bradley JM, Mozayeni BR, Bartonella spp. bacteremia in high-risk immunocompetent patients. Diagn Microbiol Infect Dis. 2011;71:430–7. DOIPubMedGoogle Scholar
- Harms CA, Maggi RG, Breitschwerdt EB, Clemons-Chevis CL, Solangi M, Rotstein DS, Bartonella species detection in captive, stranded and free-ranging cetaceans. Vet Res. 2008;39:59. DOIPubMedGoogle Scholar
- Valentine KH, Harms CA, Cadenas MB, Birkenheuer AJ, Marr HS, Braun-McNeill J, Bartonella DNA in loggerhead sea turtles. Emerg Infect Dis. 2007;13:949–50. DOIPubMedGoogle Scholar
- Hamer SA, Golberg TL, Kitron UD, Brawn JD, Anderson TK, Loss SR, Wild birds and urban ecology of ticks and tick-borne pathogens, Chicago, Illinois, USA, 2005–2010. Emerg Infect Dis. 2012;18:1589–95. DOIPubMedGoogle Scholar
- Elfving K, Olsen B, Bergström S, Waldenström J, Lundkvist A, Sjöstedt A, Dissemination of spotted fever rickettsia agents in Europe by migrating birds. PLoS ONE. 2010;5:e8572. DOIPubMedGoogle Scholar
- Waldenström J, Lundkvist A, Falk KI, Garpmo U, Bergström S, Lindegren G, Migrating birds and tickborne encephalitis virus. Emerg Infect Dis. 2007;13:1215–8. DOIPubMedGoogle Scholar
- Dubska L, Literak I, Kocianova E, Taragelova V, Sychra O. Differential role of passerine birds in distribution of Borrelia spirochetes, based on data from ticks collected from birds during the postbreeding migration period in central Europe. Appl Environ Microbiol. 2009;75:596–602. DOIPubMedGoogle Scholar
- Kang JG, Kim HC, Choi CY, Nam HY, Chae HY, Chong ST, Molecular detection of Anaplasma, Bartonella, and Borrelia species in ticks collected from migratory birds from Hong-do Island, Republic of Korea. Vector Borne Zoonotic Dis. 2013;13:215–25. DOIPubMedGoogle Scholar
Table
Cite This ArticleRelated Links
Table of Contents – Volume 20, Number 3—March 2014
EID Search Options |
---|
Advanced Article Search – Search articles by author and/or keyword. |
Articles by Country Search – Search articles by the topic country. |
Article Type Search – Search articles by article type and issue. |
Please use the form below to submit correspondence to the authors or contact them at the following address:
Edward B. Breitschwerdt, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, North Carolina 27607, USA
Top