Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 21, Number 2—February 2015
Research

Microbiota That Affect Risk for Shigellosis in Children in Low-Income Countries

Brianna LindsayComments to Author , Joe Oundo, M. Anowar Hossain, Martin Antonio, Boubou Tamboura, Alan W. Walker, Joseph N. Paulson, Julian Parkhill, Richard Omore, Abu S.G. Faruque, Suman Kumar Das, Usman N. Ikumapayi, Mitchell Adeyemi, Doh Sanogo, Debasish Saha, Samba Sow, Tamer H. Farag, Dilruba Nasrin, Shan Li, Sandra Panchalingam, Myron M. Levine, Karen Kotloff, Laurence S. Magder, Laura Hungerford, Halvor Sommerfelt, Mihai Pop, James P. Nataro, and O. Colin Stine
Author affiliations: University of Maryland School of Medicine, Baltimore, Maryland, USA (B. Lindsay, T.H. Farag, D. Nasrin, S. Li, S. Panchalingam, M.M. Levine, K. Kotloff, L.S. Magder, L. Hungerford, O.C. Stine); Centers for Disease Control and Prevention/Kenya Medical Research Institute Research Station, Kisumu, Kenya (J. Oundo, R. Omore); International Center for Diarrheal Disease Research, Mirzapur, Bangladesh (M.A. Hossain, A.S.G. Faruque, S.K. Das); Medical Research Council, Basse, The Gambia (M. Antonio, U.N. Ikumapayi, M. Adeyemi, D. Saha); Centre pour le Developpement des Vaccins du Mali, Bamako, Mali (B. Tamboura, D. Sanogo, S. Sow); Wellcome Trust Sanger Institute, Hinxton, UK (A.W. Walker, J. Parkhill); University of Maryland, College Park, Maryland, USA (J.N. Paulson, M. Pop); University of Queensland, Brisbane, Queensland, Australia (S.K. Das); University of Bergen, Bergen, Norway (H. Sommerfelt); Norwegian Institute of Public Health, Bergen (H. Sommerfelt); University of Virginia School of Medicine, Charlottesville, Virginia, USA (J.P. Nataro)

Main Article

Figure 3

Overall 16S rRNA gene–based bacterial community profiles (proportional abundance) of diarrheal samples with high levels of ipaH gene (n = 277), diarrheal samples with low levels of ipaH gene (n = 1,023), nondiarrheal samples with high levels of ipaH gene (n = 127), and nondiarrheal samples with low levels of ipaH gene (n = 1,608) from children in low-income countries. Other indicates sequences that were not identified as 1 of the 9 most abundant taxa or did not have good (>100 bp exact match,

Figure 3. Overall 16S rRNA gene–based bacterial community profiles (proportional abundance) of diarrheal samples with high levels of ipaH gene (n = 277), diarrheal samples with low levels of ipaH gene (n = 1,023), nondiarrheal samples with high levels of ipaH gene (n = 127), and nondiarrheal samples with low levels of ipaH gene (n = 1,608) from children in low-income countries. Other indicates sequences that were not identified as 1 of the 9 most abundant taxa or did not have good (>100 bp exact match, >97% identity) matches with isolate sequences from the Ribosomal Database Project (19).

Main Article

References
  1. Lozano  R, Naghavi  M, Foreman  K, Lim  S, Shibuya  K, Aboyans  V, Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095128. DOIPubMedGoogle Scholar
  2. Walker  CL, Aryee  MJ, Boschi-Pinto  C, Black  RE. Estimating diarrhea mortality among young children in low and middle income countries. PLoS ONE. 2012;7:e29151. DOIPubMedGoogle Scholar
  3. Lindsay  B, Ramamurthy  T, Sen Gupta  S, Takeda  Y, Rajendran  K, Nair  GB, Diarrheagenic pathogens in polymicrobial infections. Emerg Infect Dis. 2011;17:60611. DOIPubMedGoogle Scholar
  4. Taniuchi  M, Sobuz  SU, Begum  S, Platts-Mills  JA, Liu  J, Yang  Z, Etiology of diarrhea in Bangladeshi infants in the first year of life analyzed using molecular methods. J Infect Dis. 2013;208:1794802. DOIPubMedGoogle Scholar
  5. Platts-Mills  JA, Liu  J, Houpt  ER. New concepts in diagnostics for infectious diarrhea. Mucosal Immunol. 2013;6:87685. DOIPubMedGoogle Scholar
  6. Pop  M, Walker  AW, Paulson  JN, Lindsay  B, Antonio  M, Hossain  MA, Diarrhea in young children from low-income countries leads to large-scale alterations in intestinal microbiome composition. Genome Biol. 2014;15:R76. DOIPubMedGoogle Scholar
  7. Lindsay  B, Ochieng  JB, Ikumapayi  UN, Toure  A, Ahmed  D, Li  S, Quantitative PCR for detection of Shigella improves ascertainment of Shigella burden in children with moderate-to-severe diarrhea in low-income countries. J Clin Microbiol. 2013;51:17406. DOIPubMedGoogle Scholar
  8. Platts-Mills  JA, Gratz  J, Mduma  E, Svensen  E, Amour  C, Liu  J, Association between stool enteropathogen quantity and disease in Tanzanian children using TaqMan array cards: a nested case-control study. Am J Trop Med Hyg. 2014;90:1338. DOIPubMedGoogle Scholar
  9. Kotloff  KL, Nataro  JP, Blackwelder  WC, Nasrin  D, Farag  TH, Panchalingam  S, Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet. 2013;382:20922. DOIPubMedGoogle Scholar
  10. Bhavnani  D, Goldstick  JE, Cevallos  W, Trueba  G, Eisenberg  JNS. Synergistic effects between rotavirus and coinfecting pathogens on diarrheal disease: evidence from a community-based study in northwestern Ecuador. Am J Epidemiol. 2012;176:38795. DOIPubMedGoogle Scholar
  11. Yun  J-H, Yim  D-S, Kang  J-Y, Kang  B-Y, Shin  E-A, Chung  M-J, Identification of Lactobacillus ruminus SPM0211 isolated from healthy Koreans and its antimicrobial activity against some pathogens. Arch Pharm Res. 2005;28:6606. DOIPubMedGoogle Scholar
  12. Guandalini  S. Probiotics for children with diarrhea: an update. J Clin Gastroenterol. 2008;42(Suppl 2):S537. DOIPubMedGoogle Scholar
  13. Srikanth  CV, McCormick  BA. Interactions of the intestinal epithelium with the pathogen and the indigenous microbiota: a three-way crosswalk. Interdiscip Perspect Infect Dis. 2008;2008:626827. . Epub 2008 Oct 29.DOIGoogle Scholar
  14. Levine  MM, Kotloff  KL, Nataro  JP, Muhsen  K. The Global Enteric Multicenter Study (GEMS): impetus, rationale, and genesis. Clin Infect Dis. 2012;55(Suppl 4):S21524. DOIPubMedGoogle Scholar
  15. Kotloff  KL, Blackwelder  WC, Nasrin  D, Nataro  JP, Farag  TH, van Eijk  A, The Global Enteric Multicenter Study (GEMS) of diarrheal disease in infants and young children in developing countries: epidemiologic and clinical methods of the case/control study. Clin Infect Dis. 2012;55(Suppl 4):S23245. DOIPubMedGoogle Scholar
  16. Panchalingam  S, Antonio  M, Hossain  A, Mandomando  I, Ochieng  B, Oundo  J, Diagnostic microbiologic methods in the GEMS-1 case/control study. Clin Infect Dis. 2012;55(Suppl 4):S294302. DOIPubMedGoogle Scholar
  17. Vu  DT, Sethabutr  O, Von Seidlein  L, Tran  VT, Do  GC, Bui  TC, Detection of Shigella by a PCR assay targeting the ipaH gene suggests increased prevalence of shigellosis in Nha Trang, Vietnam. J Clin Microbiol. 2004;42:20315. DOIPubMedGoogle Scholar
  18. Ghodsi  M, Liu  B, Pop  M. DNACLUST: accurate and efficient clustering of phylogenetic marker genes. BMC Bioinformatics. 2011;12:271 and. DOIPubMedGoogle Scholar
  19. Cole  JR, Chai  B, Farris  RJ, Wang  Q, Kulam  SA, McGarrell  DM, The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 2005;33:D2946. DOIPubMedGoogle Scholar
  20. Rothman  KJ. Epidemiology: an introduction. New York: Oxford University Press; 2012.
  21. Knol  MJ, VanderWeele  TJ. Recommendations for presenting analyses of effect modification and interaction. Int J Epidemiol. 2012;41:51420. DOIPubMedGoogle Scholar
  22. Andersson  T, Alfredsson  L, Källberg  H, Zdravkovic  S, Ahlbom  A. Calculating measures of biological interaction. Eur J Epidemiol. 2005;20:5759. DOIPubMedGoogle Scholar
  23. Zou  GY. On the estimation of additive interaction by use of the four-by-two table and beyond. Am J Epidemiol. 2008;168:21224. DOIPubMedGoogle Scholar
  24. Hosmer  DW, Lemeshow  S. Confidence interval estimation of interaction. Epidemiology. 1992;3:4526 and. DOIPubMedGoogle Scholar
  25. Oksanen  J, Blanchet  FG, Kindt  R, Legendre  P, Minchin  PR, O’Hara  RB, Vegan: Community Ecology Package, 2013 [cited 2014 Apr 8]. http://cran.r-project.org/web/packages/vegan/index.html
  26. Lindsay  B, Pop  M, Antonio  M, Walker  AW, Mai  V, Ahmed  D, Survey of culture, goldengate assay, universal biosensor assay, and 16S rRNA gene sequencing as alternative methods of bacterial pathogen detection. J Clin Microbiol. 2013;51:32639. DOIPubMedGoogle Scholar
  27. Sinha  A, SenGupta  S, Guin  S, Dutta  S, Ghosh  S, Mukherjee  P, Culture-independent real-time PCR reveals extensive polymicrobial infections in hospitalized diarrhoea cases in Kolkata, India. Clin Microbiol Infect. 2013;19:17380. DOIPubMedGoogle Scholar
  28. Kwambana  BA, Ikumapayi  UN, Sallah  N, Dione  M, Jarju  S, Panchalingham  S, High genotypic diversity among rotavirus strains infecting Gambian children. Pediatr Infect Dis J. 2014;33(Suppl 1):S6975. DOIPubMedGoogle Scholar
  29. Lynn  HS, McCulloch  CE. When does it pay to break the matches for analysis of a matched-pairs design? Biometrics. 1992;48:397409. DOIPubMedGoogle Scholar
  30. Hansson  L, Khamis  HJ. Matched samples logistic regression in case-control studies with missing values: when to break the matches. Stat Methods Med Res. 2008;17:595607 . DOIPubMedGoogle Scholar

Main Article

Page created: January 20, 2015
Page updated: January 20, 2015
Page reviewed: January 20, 2015
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external