Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 30, Number 8—August 2024
Research

Wastewater Surveillance to Confirm Differences in Influenza A Infection between Michigan, USA, and Ontario, Canada, September 2022–March 2023

Ryland Corchis-ScottComments to Author , Mackenzie Beach, Qiudi Geng, Ana Podadera, Owen Corchis-Scott, John Norton, Andrea Busch, Russell A. Faust, Stacey McFarlane, Scott Withington, Bridget Irwin, Mehdi Aloosh, Kenneth K.S. Ng, and R. Michael McKay
Author affiliations: University of Windsor, Windsor, Ontario, Canada (R. Corchis-Scott, M. Beach, Q. Geng, A. Podadera, O. Corchis-Scott, K.K.S. Ng, R.M. McKay); Great Lakes Water Authority, Detroit, Michigan, USA (J. Norton, A. Busch); Oakland County Health Division, Oakland, Michigan, USA (R.A. Faust); Macomb County Health Department, Macomb, Michigan, USA (S. McFarlane); Detroit Health Department, Detroit (S. Withington); Windsor-Essex County Health Unit, Windsor (B. Irwin, M. Aloosh); McMaster University, Hamilton, Ontario (M. Aloosh)

Main Article

Table 2

Unshifted correlations between influenza-associated hospitalizations and the aggregate population-weighted wastewater concentrations for influenza A virus in Windsor-Essex, Ontario, Canada, September 2022–March 2023*

Associations†
Statistical test results
2-tailed 95% CI‡
2-tailed p value
Kendall τ
Spearman ρ
WEC M1 and influenza-associated hospitalization 0.650 0.482–0.772 <0.001
WEC M1:PMMoV and influenza-associated hospitalizations 0.630 0.456–0.758 <0.001
WEC M1 and influenza-associated hospitalization 0.785 0.589–0. 893 <0.001
WEC M1:PMMoV and influenza-associated hospitalizations 0.754 0.538–0.877 <0.001

*M1, matrix 1 gene: PMMoV, pepper mottle mild virus; WEC, Windor-Essex County wastewater. †WEC M1, aggregate concentration of influenza A M1 gene in WEC (gc/L); WEC M1:PMMoV, concentration of influenza A M1 gene in WEC normalized to PMMoV concentration (unitless). ‡Estimation is based on Fisher r-to-z transformation; estimation of SE is based on the formula proposed by Fieller, Hartley, and Pearson (27).

Main Article

References
  1. Fauci  AS, Folkers  GK. Pandemic preparedness and response: lessons from COVID-19. J Infect Dis. 2023;228:4225. DOIPubMedGoogle Scholar
  2. Havasi  A, Visan  S, Cainap  C, Cainap  SS, Mihaila  AA, Pop  LA. Influenza A, influenza B, and SARS-CoV-2 similarities and differences—a focus on diagnosis. Front Microbiol. 2022;13:908525. DOIPubMedGoogle Scholar
  3. Yuan  P, Aruffo  E, Tan  Y, Yang  L, Ogden  NH, Fazil  A, et al. Projections of the transmission of the Omicron variant for Toronto, Ontario, and Canada using surveillance data following recent changes in testing policies. Infect Dis Model. 2022;7:8393. DOIPubMedGoogle Scholar
  4. Koplan  JP, Butler-Jones  D, Tsang  T, Yu  W. Public health lessons from severe acute respiratory syndrome a decade later. Emerg Infect Dis. 2013;19:8613. DOIPubMedGoogle Scholar
  5. Wright  J, Driver  EM, Bowes  DA, Johnston  B, Halden  RU. Comparison of high-frequency in-pipe SARS-CoV-2 wastewater-based surveillance to concurrent COVID-19 random clinical testing on a public U.S. university campus. Sci Total Environ. 2022;820:152877. DOIPubMedGoogle Scholar
  6. Yoo  BK, Iwamoto  R, Chung  U, Sasaki  T, Kitajima  M. Economic evaluation of wastewater surveillance combined with clinical COVID-19 screening tests, Japan. Emerg Infect Dis. 2023;29:160817. DOIPubMedGoogle Scholar
  7. D’Aoust  PM, Graber  TE, Mercier  E, Montpetit  D, Alexandrov  I, Neault  N, et al. Catching a resurgence: Increase in SARS-CoV-2 viral RNA identified in wastewater 48 h before COVID-19 clinical tests and 96 h before hospitalizations. Sci Total Environ. 2021;770:145319. DOIPubMedGoogle Scholar
  8. Ahmed  W, Tscharke  B, Bertsch  PM, Bibby  K, Bivins  A, Choi  P, et al. SARS-CoV-2 RNA monitoring in wastewater as a potential early warning system for COVID-19 transmission in the community: A temporal case study. Sci Total Environ. 2021;761:144216. DOIPubMedGoogle Scholar
  9. Diamond  MB, Keshaviah  A, Bento  AI, Conroy-Ben  O, Driver  EM, Ensor  KB, et al. Wastewater surveillance of pathogens can inform public health responses. Nat Med. 2022;28:19925. DOIPubMedGoogle Scholar
  10. Rolfes  MA, Foppa  IM, Garg  S, Flannery  B, Brammer  L, Singleton  JA, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respir Viruses. 2018;12:1327. DOIPubMedGoogle Scholar
  11. Al Khatib  HA, Coyle  PV, Al Maslamani  MA, Al Thani  AA, Pathan  SA, Yassine  HM. Molecular and biological characterization of influenza A viruses isolated from human fecal samples. Infect Genet Evol. 2021;93:104972. DOIPubMedGoogle Scholar
  12. Toribio-Avedillo  D, Gómez-Gómez  C, Sala-Comorera  L, Rodríguez-Rubio  L, Carcereny  A, García-Pedemonte  D, et al. Monitoring influenza and respiratory syncytial virus in wastewater. Beyond COVID-19. Sci Total Environ. 2023;892:164495. DOIPubMedGoogle Scholar
  13. Mercier  E, D’Aoust  PM, Thakali  O, Hegazy  N, Jia  JJ, Zhang  Z, et al. Municipal and neighbourhood level wastewater surveillance and subtyping of an influenza virus outbreak. Sci Rep. 2022;12:15777. DOIPubMedGoogle Scholar
  14. Ahmed  W, Bivins  A, Stephens  M, Metcalfe  S, Smith  WJM, Sirikanchana  K, et al. Occurrence of multiple respiratory viruses in wastewater in Queensland, Australia: Potential for community disease surveillance. Sci Total Environ. 2023;864:161023. DOIPubMedGoogle Scholar
  15. Maoh  H, Dimatulac  T, Khan  S, Litwin  M. Studying border crossing choice behavior of trucks moving between Ontario, Canada and the United States. J Transp Geogr. 2021;91:102992. DOIGoogle Scholar
  16. Dunphy  S. Cross-border labour mobility in the Windsor-Detroit region: the case of nurses. The Estey Centre Journal of International Law and Trade Policy. 2015;16:1438.
  17. Skowronski  DM, Chuang  ES, Sabaiduc  S, Kaweski  SE, Kim  S, Dickinson  JA, et al. Vaccine effectiveness estimates from an early-season influenza A(H3N2) epidemic, including unique genetic diversity with reassortment, Canada, 2022/23. Euro Surveill. 2023;28:2300043. DOIPubMedGoogle Scholar
  18. Kim  S, Chuang  ES, Sabaiduc  S, Olsha  R, Kaweski  SE, Zelyas  N, et al. Influenza vaccine effectiveness against A(H3N2) during the delayed 2021/22 epidemic in Canada. Euro Surveill. 2022;27:2200720. DOIPubMedGoogle Scholar
  19. Centers for Disease Control and Prevention. Preliminary flu burden estimates, 2021–22 season. 2023 [cited 2024 Apr 11]. https://www.cdc.gov/flu/about/burden/2021-2022.htm
  20. Michigan Department of Health & Human Services. Past Michigan flu focus reports [cited 2023 Sep 28]. https://www.michigan.gov/flu/surveillance/past-michigan-flu-focus-surveillance-reports
  21. Zhao  L, Geng  Q, Corchis-Scott  R, McKay  RM, Norton  J, Xagoraraki  I. Targeting a free viral fraction enhances the early alert potential of wastewater surveillance for SARS-CoV-2: a methods comparison spanning the transition between delta and omicron variants in a large urban center. Front Public Health. 2023;11:1140441. DOIPubMedGoogle Scholar
  22. Smith  CDM. Great Lakes Water Authority wastewater master plan. 2020 Jun [cited 2024 Apr 23]. https://www.glwater.org/wp-content/uploads/2020/12/Full_WWMP_Report_Final_June-2020.pdf
  23. Centers for Disease Control and Prevention. CDC’s influenza SARS-CoV-2 multiplex assay. 2020 [cited 2023 Sep 20]. https://www.cdc.gov/coronavirus/2019-ncov/lab/multiplex.html
  24. Rosario  K, Symonds  EM, Sinigalliano  C, Stewart  J, Breitbart  M. Pepper mild mottle virus as an indicator of fecal pollution. Appl Environ Microbiol. 2009;75:72617. DOIPubMedGoogle Scholar
  25. Centers for Disease Control and Prevention. Influenza Hospitalization Surveillance Network. 2024 [cited 2024 Apr 11]. https://www.cdc.gov/flu/weekly/influenza-hospitalization-surveillance.htm
  26. Rauch  W, Schenk  H, Insam  H, Markt  R, Kreuzinger  N. Data modelling recipes for SARS-CoV-2 wastewater-based epidemiology. Environ Res. 2022;214:113809. DOIPubMedGoogle Scholar
  27. Fieller  EC, Hartley  HO, Pearson  ES. Tests for rank correlation coefficients. I. Biometrika. 1957;44:47081. DOIGoogle Scholar
  28. DeJonge  PM, Adams  C, Pray  I, Schussman  MK, Fahney  RB, Shafer  M, et al. Wastewater surveillance data as a complement to emergency department visit data for tracking incidence of influenza A and respiratory syncytial virus—Wisconsin, August 2022–March 2023. MMWR Morb Mortal Wkly Rep. 2023;72:10059. DOIPubMedGoogle Scholar
  29. Faherty  EAG, Yuce  D, Korban  C, Bemis  K, Kowalski  R, Gretsch  S, et al. Correlation of wastewater surveillance data with traditional influenza surveillance measures in Cook County, Illinois, October 2022-April 2023. Sci Total Environ. 2024;912:169551. DOIPubMedGoogle Scholar
  30. Schoen  ME, Bidwell  AL, Wolfe  MK, Boehm  AB. United States influenza 2022–2023 season characteristics as inferred from wastewater solids, influenza hospitalization, and syndromic data. Environ Sci Technol. 2023;57:2054250. DOIPubMedGoogle Scholar
  31. Ip  DKM, Lau  LLH, Chan  KH, Fang  VJ, Leung  GM, Peiris  MJS, et al. The dynamic relationship between clinical symptomatology and viral shedding in naturally acquired seasonal and pandemic influenza virus infections. Clin Infect Dis. 2016;62:4317.PubMedGoogle Scholar
  32. Carrat  F, Vergu  E, Ferguson  NM, Lemaitre  M, Cauchemez  S, Leach  S, et al. Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am J Epidemiol. 2008;167:77585. DOIPubMedGoogle Scholar
  33. Chan  MCW, Lee  N, Chan  PKS, To  KF, Wong  RYK, Ho  WS, et al. Seasonal influenza A virus in feces of hospitalized adults. Emerg Infect Dis. 2011;17:203842. DOIPubMedGoogle Scholar
  34. Mattei  M, Pintó  RM, Guix  S, Bosch  A, Arenas  A. Analysis of SARS-CoV-2 in wastewater for prevalence estimation and investigating clinical diagnostic test biases. Water Res. 2023;242:120223. DOIPubMedGoogle Scholar
  35. Brunet-Jailly  E. Cross-border cooperation: a global overview. Alternatives (Boulder). 2022;47:317. DOIPubMedGoogle Scholar
  36. Jabakhanji  S, Knope  J. Ontario to drop most mask mandates on March 21, remaining pandemic rules to lift by end of April. 2022 [cited 2023 Sep 28]. https://www.cbc.ca/news/canada/toronto/covid19-ontario-march-9-mask-mandates-1.6378148
  37. Boucher  D. Michigan ends most COVID-19 restrictions today: what it means for you [cited 2023 Nov 23]. https://www.freep.com/story/news/local/michigan/2021/06/22/covid-updates-michigan-restrictions-mask-mandate/7774556002/
  38. McLean  HQ, Petrie  JG, Hanson  KE, Meece  JK, Rolfes  MA, Sylvester  GC, et al. Interim estimates of 2022-23 seasonal influenza vaccine effectiveness—Wisconsin, October 2022–February 2023. MMWR Morb Mortal Wkly Rep. 2023;72:2015. DOIPubMedGoogle Scholar
  39. Centers for Disease Control and Prevention. Preliminary flu vaccine effectiveness (VE) data for 2022–2023. 2023 [cited 2023 Oct 26]. https://www.cdc.gov/flu/vaccines-work/2022-2023.html
  40. Public Health Sudbury & Districts. Influenza vaccine availability for the 2022/2023 season [cited 2023 Sep 28]. https://www.phsd.ca/professionals/health-professionals/advisory-alerts-health-care-professionals/influenza-vaccine-availability-for-the-2022-2023-season
  41. Michigan Department of Health and Human Services, Division of Immunization. Seasonal influenza vaccines 2023–2024. 2023. [cited 2023 Sep 28]. https://www.michigan.gov/flu/-/media/Project/Websites/flu/Flu-Presentation-Chart-23-24_FINAL.pdf
  42. Armas  F, Chandra  F, Lee  WL, Gu  X, Chen  H, Xiao  A, et al. Contextualizing Wastewater-Based surveillance in the COVID-19 vaccination era. Environ Int. 2023;171:107718. DOIPubMedGoogle Scholar
  43. Michigan Department of Health & Human Services. Flu dashboard [cited 2023 Sep 28]. https://www.michigan.gov/flu/flu-dashboard
  44. Moore  KM. Ontario’s universal influenza immunization program (UIIP)–2022/2023. 2022 [cited 2023 Sep 28]. https://www.wechu.org/sites/default/files/pdf/2022-23_UIIP_CMOH_letter_to_HCPs_EN.pdf
  45. Mamelund  SE, Shelley-Egan  C, Rogeberg  O. The association between socioeconomic status and pandemic influenza: Systematic review and meta-analysis. PLoS One. 2021;16:e0244346. DOIPubMedGoogle Scholar
  46. Kurupati  R, Kossenkov  A, Haut  L, Kannan  S, Xiang  Z, Li  Y, et al. Race-related differences in antibody responses to the inactivated influenza vaccine are linked to distinct pre-vaccination gene expression profiles in blood. Oncotarget. 2016;7:62898911. DOIPubMedGoogle Scholar
  47. Jayasundara  K, Soobiah  C, Thommes  E, Tricco  AC, Chit  A. Natural attack rate of influenza in unvaccinated children and adults: a meta-regression analysis. BMC Infect Dis. 2014;14:670. DOIPubMedGoogle Scholar
  48. Pinky  L, Dobrovolny  HM. Epidemiological consequences of viral interference: a mathematical modeling study of two interacting viruses. Front Microbiol. 2022;13:830423. DOIPubMedGoogle Scholar

Main Article

Page created: July 03, 2024
Page updated: July 20, 2024
Page reviewed: July 20, 2024
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external