Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 30, Number 9—September 2024
Research

Formation of Single-Species and Multispecies Biofilm by Isolates from Septic Transfusion Reactions in Platelet Bag Model

Cheryl Anne Hapip, Erin Fischer, Tamar Perla Feldman, and Bethany L. BrownComments to Author 
Author affiliation: American Red Cross, Rockville, Maryland, USA

Main Article

Table

Acinetobacter spp. bacteria–related and polymicrobial septic transfusion reactions, United States, May 2018–July 2021*

Year and month Location (outcome) Risk mitigation (result) Bacterial species
2018 May Northern California Pathogen-reduction technology A–S†
2018 May Utah (fatality) Aerobic culture (neg) A
2018 Oct Connecticut‡ Aerobic culture (neg), rapid antigen test (neg) A–S
2018 Oct Connecticut‡ Aerobic culture (neg), rapid antigen test (neg) A–S
2020 Jun North and South Carolina (fatality) Pathogen-reduction technology A–S–L
2020 Jun Central Ohio, Pennsylvania, New Jersey Aerobic culture (neg), anaerobic culture (neg)
2021 Jul Ohio (fatality) Pathogen-reduction technology A–S–L†
2021 Jul
Virginia
Pathogen-reduction technology
S–L
*A, Acinetobacter spp.; L, Leclercia adecarboxylata; neg, negative; S, Staphylococcus saprophyticus.
†Clinical isolates used in the experiments.
‡Two separate reactions from a double platelet.
§Case was excluded from Acinetobacter spp. cluster investigation by Centers for Disease Control and Prevention and US Food and Drug Administration based on whole-genome sequencing data (5,36).

Main Article

References
  1. Food and Drug Administration. Important information for blood establishments and transfusion services regarding bacterial contamination of platelets for transfusion. 2021 Dec 2 [cited 2024 Dec 15]. https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/important-information-blood-establishments-and-transfusion-services-regarding-bacterial
  2. Fridey  JL, Stramer  SL, Nambiar  A, Moayeri  M, Bakkour  S, Langelier  C, et al. Sepsis from an apheresis platelet contaminated with Acinetobacter calcoaceticus/baumannii complex bacteria and Staphylococcus saprophyticus after pathogen reduction. Transfusion. 2020;60:19609. DOIPubMedGoogle Scholar
  3. Jones  SA, Jones  JM, Leung  V, Nakashima  AK, Oakeson  KF, Smith  AR, et al. Sepsis attributed to bacterial contamination of platelets associated with a potential common source—multiple states, 2018. MMWR Morb Mortal Wkly Rep. 2019;68:51923. DOIPubMedGoogle Scholar
  4. Kracalik  I, Kent  AG, Villa  CH, Gable  P, Annambhotla  P, McAllister  G, et al. Posttransfusion sepsis attributable to bacterial contamination in platelet collection set manufacturing facility, United States. Emerg Infect Dis. 2023;29:197989. DOIPubMedGoogle Scholar
  5. Villa  CH, Illoh  O, Kracalik  I, Basavaraju  SV, Eder  AF. Posttransfusion sepsis attributable to bacterial contamination in platelet collection set manufacturing, United States. Transfusion. 2023;63:23517. DOIPubMedGoogle Scholar
  6. Food and Drug Administration. Important information for blood establishments and transfusion services regarding bacterial contamination of platelets for transfusion. 2022 Dec 22 [cited 2023 Dec 15]. https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/important-information-blood-establishments-and-transfusion-services-regarding-bacterial
  7. Ledwoch  K, Dancer  SJ, Otter  JA, Kerr  K, Roposte  D, Rushton  L, et al. Beware biofilm! Dry biofilms containing bacterial pathogens on multiple healthcare surfaces; a multi-centre study. J Hosp Infect. 2018;100:e4756. DOIPubMedGoogle Scholar
  8. Moris  V, Lam  M, Amoureux  L, Magallon  A, Guilloteau  A, Maldiney  T, et al. What is the best technic to dislodge Staphylococcus epidermidis biofilm on medical implants? BMC Microbiol. 2022;22:192. DOIPubMedGoogle Scholar
  9. Sharma  S, Mohler  J, Mahajan  SD, Schwartz  SA, Bruggemann  L, Aalinkeel  R. Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms. 2023;11:1614. DOIPubMedGoogle Scholar
  10. Didouh  N, Khadidja  M, Campos  C, Sampaio-Maia  B, Boumediene  MB, Araujo  R. Assessment of biofilm, enzyme production and antibiotic susceptibility of bacteria from milk pre- and post-pasteurization pipelines in Algeria. Int J Food Microbiol. 2023;407:110389. DOIPubMedGoogle Scholar
  11. Zeighami  H, Valadkhani  F, Shapouri  R, Samadi  E, Haghi  F. Virulence characteristics of multidrug resistant biofilm forming Acinetobacter baumannii isolated from intensive care unit patients. BMC Infect Dis. 2019;19:629. DOIPubMedGoogle Scholar
  12. Gedefie  A, Demsis  W, Ashagrie  M, Kassa  Y, Tesfaye  M, Tilahun  M, et al. Acinetobacter baumannii biofilm formation and its role in disease pathogenesis: a review. Infect Drug Resist. 2021;14:37119. DOIPubMedGoogle Scholar
  13. Kerantzas  CA, Merwede  J, Snyder  EL, Hendrickson  JE, Tormey  CA, Kazmierczak  BI, et al. Assessment of polymicrobial interactions in bacterial isolates from transfused platelet units associated with sepsis. Transfusion. 2022;62:245863. DOIPubMedGoogle Scholar
  14. Lawal  OU, Barata  M, Fraqueza  MJ, Worning  P, Bartels  MD, Goncalves  L, et al. Staphylococcus saprophyticus from clinical and environmental origins have distinct biofilm composition. Front Microbiol. 2021;12:663768. DOIPubMedGoogle Scholar
  15. Colquhoun  JM, Rather  PN. Insights into mechanisms of biofilm formation in Acinetobacter baumannii and implications for uropathogenesis. Front Cell Infect Microbiol. 2020;10:253. DOIPubMedGoogle Scholar
  16. Gottesman  T, Fedorowsky  R, Yerushalmi  R, Lellouche  J, Nutman  A. An outbreak of carbapenem-resistant Acinetobacter baumannii in a COVID-19 dedicated hospital. Infect Prev Pract. 2021;3:100113. DOIPubMedGoogle Scholar
  17. Perez  S, Innes  GK, Walters  MS, Mehr  J, Arias  J, Greeley  R, et al. Increase in hospital-acquired carbapenem-resistant Acinetobacter baumannii infection and colonization in an acute care hospital during a surge in COVID-19 admissions—New Jersey, February–July 2020. MMWR Morb Mortal Wkly Rep. 2020;69:182731. DOIPubMedGoogle Scholar
  18. Upmanyu  K, Haq  QMR, Singh  R. Factors mediating Acinetobacter baumannii biofilm formation: Opportunities for developing therapeutics. Curr Res Microb Sci. 2022;3:100131. DOIPubMedGoogle Scholar
  19. Wong  D, Nielsen  TB, Bonomo  RA, Pantapalangkoor  P, Luna  B, Spellberg  B. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev. 2017;30:40947. DOIPubMedGoogle Scholar
  20. Hadjesfandiari  N, Schubert  P, Fallah Toosi  S, Chen  Z, Culibrk  B, Ramirez-Arcos  S, et al. Effect of texture of platelet bags on bacterial and platelet adhesion. Transfusion. 2016;56:280818. DOIPubMedGoogle Scholar
  21. Loza-Correa  M, Kalab  M, Yi  QL, Eltringham-Smith  LJ, Sheffield  WP, Ramirez-Arcos  S. Comparison of bacterial attachment to platelet bags with and without preconditioning with plasma. Vox Sang. 2017;112:4017. DOIPubMedGoogle Scholar
  22. Wilson-Nieuwenhuis  JST, Dempsey-Hibbert  N, Liauw  CM, Whitehead  KA. Surface modification of platelet concentrate bags to reduce biofilm formation and transfusion sepsis. Colloids Surf B Biointerfaces. 2017;160:12635. DOIPubMedGoogle Scholar
  23. Taha  M, Culibrk  B, Kalab  M, Schubert  P, Yi  QL, Goodrich  R, et al. Efficiency of riboflavin and ultraviolet light treatment against high levels of biofilm-derived Staphylococcus epidermidis in buffy coat platelet concentrates. Vox Sang. 2017;112:40816. DOIPubMedGoogle Scholar
  24. Hapip  CA, Brown  BL. The role of biofilms in the blood center environment. American Association for Advancement of Blood and Biotherapies. 2022 [cited 2022 Oct 21]. https://aabb.confex.com/aabb/2022/meetingapp.cgi/Paper/10736
  25. Allkja  J, Bjarnsholt  T, Coenye  T, Cos  P, Fallarero  A, Harrison  JJ, et al. Minimum information guideline for spectrophotometric and fluorometric methods to assess biofilm formation in microplates. Biofilm. 2019;2:100010. DOIPubMedGoogle Scholar
  26. Sandbakken  ET, Witsø  E, Sporsheim  B, Egeberg  KW, Foss  OA, Hoang  L, et al. Highly variable effect of sonication to dislodge biofilm-embedded Staphylococcus epidermidis directly quantified by epifluorescence microscopy: an in vitro model study. J Orthop Surg Res. 2020;15:522. DOIPubMedGoogle Scholar
  27. Ahmad  I, Nadeem  A, Mushtaq  F, Zlatkov  N, Shahzad  M, Zavialov  AV, et al. Csu pili dependent biofilm formation and virulence of Acinetobacter baumannii. NPJ Biofilms Microbiomes. 2023;9:101. DOIPubMedGoogle Scholar
  28. Nyanasegran  PK, Nathan  S, Firdaus-Raih  M, Muhammad  NAN, Ng  CL. Biofilm signaling, composition and regulation in Burkholderia pseudomallei. J Microbiol Biotechnol. 2023;33:1527. DOIPubMedGoogle Scholar
  29. Ali  H, Greco-Stewart  VS, Jacobs  MR, Yomtovian  RA, Rood  IGH, de Korte  D, et al. Characterization of the growth dynamics and biofilm formation of Staphylococcus epidermidis strains isolated from contaminated platelet units. J Med Microbiol. 2014;63:88491. DOIPubMedGoogle Scholar
  30. Loza-Correa  M, Yousuf  B, Ramirez-Arcos  S. Staphylococcus epidermidis undergoes global changes in gene expression during biofilm maturation in platelet concentrates. Transfusion. 2021;61:214658. DOIPubMedGoogle Scholar
  31. Greco-Stewart  VS, Brown  EE, Parr  C, Kalab  M, Jacobs  MR, Yomtovian  RA, et al. Serratia marcescens strains implicated in adverse transfusion reactions form biofilms in platelet concentrates and demonstrate reduced detection by automated culture. Vox Sang. 2012;102:21220. DOIPubMedGoogle Scholar
  32. Fadeyi  EA, Wagner  SJ, Goldberg  C, Lu  T, Young  P, Bringmann  PW, et al. Fatal sepsis associated with a storage container leak permitting platelet contamination with environmental bacteria after pathogen reduction. Transfusion. 2021;61:6418. DOIPubMedGoogle Scholar
  33. Spindler-Raffel  E, Benjamin  RJ, McDonald  CP, Ramirez-Arcos  S, Aplin  K, Bekeredjian-Ding  I, et al.; ISBT Working Party Transfusion-Transmitted Infectious Diseases (WP-TTID), Subgroup on Bacteria. Enlargement of the WHO international repository for platelet transfusion-relevant bacteria reference strains. Vox Sang. 2017;112:71322. DOIPubMedGoogle Scholar
  34. Fux  CA, Uehlinger  D, Bodmer  T, Droz  S, Zellweger  C, Mühlemann  K. Dynamics of hemodialysis catheter colonization by coagulase-negative staphylococci. Infect Control Hosp Epidemiol. 2005;26:56774. DOIPubMedGoogle Scholar
  35. Food and Drug Administration. Bacterial risk control strategies for blood collection establishments and transfusion services to enhance the safety and availability of platelets for transfusion. 2020 Dec [cited 2023 Dec 15]. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bacterial-risk-control-strategies-blood-collection-establishments-and-transfusion-services-enhance
  36. Kracalik  I, Sapiano  MRP, Wild  RC, Chavez Ortiz  J, Stewart  P, Berger  JJ, et al. Supplemental findings of the 2021 National Blood Collection and Utilization Survey. Transfusion. 2023;63(Suppl 4):S1942. DOIPubMedGoogle Scholar

Main Article

Page created: July 16, 2024
Page updated: August 20, 2024
Page reviewed: August 20, 2024
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external