Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 31, Number 5—May 2025
Dispatch

Venezuelan Equine Encephalitis, Peruvian Amazon, 2020

Marta Piche-Ovares, Maria Paquita García Mendoza, Andres Moreira-Soto, Carlo Fischer, Sebastian Brünink, Maribel Dana Figueroa-Romero, Nancy Susy Merino-Sarmiento, Adolfo Ismael Marcelo-Ñique, Edward Málaga-Trillo, Miladi Gatty-Nogueira, César Augusto Cabezas Sanchez, and Jan Felix DrexlerComments to Author 
Author affiliation: Charité Universitätsmedizin Berlin, Berlin, Germany (M. Piche-Ovares, A. Moreira-Soto, C. Fischer, S. Brünink, J.F. Drexler); Instituto Nacional de Salud, Lima, Peru (M.P. García Mendoza, M.D. Figueroa-Romero, N.S. Merino-Sarmiento, A.I. Marcelo-Ñique, C.A. Cabezas Sanchez); Universidad Nacional de Costa Rica, Heredia, Costa Rica (A. Moreira-Soto); Universidad Peruana Cayetano Heredia, Lima (E. Málaga-Trillo); Laboratorio de Refencia Regional en Salud Publica, Loreto, Peru (M. Gatty-Nogueira); German Centre for Infection Research, associated partner of Charité-Universitätsmedizin Berlin, Berlin (J.F. Drexler)

Main Article

Figure 2

Phylogenetic and time scale analysis of Venezuelan equine encephalitis virus (VEEV) from study of Venezuelan equine encephalitis, Peruvian Amazon, 2020. A, B) Phylogenetic analyses. A) relationships of VEEV from Peru (Peru 2020 and Peru 2021, depicted in red) and members of the Venezuelan equine encephalitis antigenic complex, based on the concatenated coding sequence (11,629 nt). Madariaga virus was included as an outgroup. B) Phylogenetic relationships of Peru 2020 and Peru 2021 (shown in red) and members of VEEV subtype ID Panama/Peru lineage, based on a partial sequence of the envelope glycoprotein precursor (PE2, 817 nt). Phylogenetic trees were constructed using MrBayes 3.2.6 (https://github.com/NBISweden/MrBayes/releases/tag/v3.2.6). GenBank accession number, country, and collection year are indicated for each sequence. Posterior probability ≥0.80 is indicated as a black circle in the node. C) Time to most recent common ancestor of VEEV identified in this study (Peru 2020 and Peru 2021, shown in red) and members of the ID and IAB subtypes, by number of years ago, calculated using BEAST 1.7.1 (https://beast.community), based on the concatenated coding sequence (11,629 nt). Tip dates were obtained from the sampling year following a previous phylogenetic analysis of VEEV subtype ID and IAB; no further calibration of node ages was performed to construct the tree. Times are identified at each branch by number of years ago; numbers in parentheses indicate 95% highest posterior density values in years (11). Col, Colombia; Ecu, Ecuador; Gua, Guatemala; Pan, Panama; Per, Peru; Ven, Venezuela.

Figure 2. Phylogenetic and time scale analysis of Venezuelan equine encephalitis virus (VEEV) from study of Venezuelan equine encephalitis, Peruvian Amazon, 2020. A, B) Phylogenetic analyses. A) relationships of VEEV from Peru (Peru 2020 and Peru 2021, depicted in red) and members of the Venezuelan equine encephalitis antigenic complex, based on the concatenated coding sequence (11,629 nt). Madariaga virus was included as an outgroup. B) Phylogenetic relationships of Peru 2020 and Peru 2021 (shown in red) and members of VEEV subtype ID Panama/Peru lineage, based on a partial sequence of the envelope glycoprotein precursor (PE2, 817 nt). Phylogenetic trees were constructed using MrBayes 3.2.6 (https://github.com/NBISweden/MrBayes/releases/tag/v3.2.6). GenBank accession number, country, and collection year are indicated for each sequence. Posterior probability ≥0.80 is indicated as a black circle in the node. C) Time to most recent common ancestor of VEEV identified in this study (Peru 2020 and Peru 2021, shown in red) and members of the ID and IAB subtypes, by number of years ago, calculated using BEAST 1.7.1 (https://beast.community), based on the concatenated coding sequence (11,629 nt). Tip dates were obtained from the sampling year following a previous phylogenetic analysis of VEEV subtype ID and IAB; no further calibration of node ages was performed to construct the tree. Times are identified at each branch by number of years ago; numbers in parentheses indicate 95% highest posterior density values in years (11). Col, Colombia; Ecu, Ecuador; Gua, Guatemala; Pan, Panama; Per, Peru; Ven, Venezuela.

Main Article

References
  1. Weaver  SC, Barrett  AD. Transmission cycles, host range, evolution and emergence of arboviral disease. Nat Rev Microbiol. 2004;2:789801. DOIPubMedGoogle Scholar
  2. Aguilar  PV, Estrada-Franco  JG, Navarro-Lopez  R, Ferro  C, Haddow  AD, Weaver  SC. Endemic Venezuelan equine encephalitis in the Americas: hidden under the dengue umbrella. Future Virol. 2011;6:72140. DOIPubMedGoogle Scholar
  3. Aguilar  PV, Greene  IP, Coffey  LL, Medina  G, Moncayo  AC, Anishchenko  M, et al. Endemic Venezuelan equine encephalitis in northern Peru. Emerg Infect Dis. 2004;10:8808. DOIPubMedGoogle Scholar
  4. Forshey  BM, Guevara  C, Laguna-Torres  VA, Cespedes  M, Vargas  J, Gianella  A, et al.; NMRCD Febrile Surveillance Working Group. Arboviral etiologies of acute febrile illnesses in Western South America, 2000-2007. PLoS Negl Trop Dis. 2010;4:e787. DOIPubMedGoogle Scholar
  5. Watts  DM, Russell  KL, Wooster  MT, Sharp  TW, Morrison  AC, Kochel  TJ, et al. Etiologies of acute undifferentiated febrile illnesses in and near Iquitos from 1993 to 1999 in the Amazon River Basin of Peru. Am J Trop Med Hyg. 2022;107:111428. DOIPubMedGoogle Scholar
  6. Vilcarromero  S, Aguilar  PV, Halsey  ES, Laguna-Torres  VA, Razuri  H, Perez  J, et al. Venezuelan equine encephalitis and 2 human deaths, Peru. Emerg Infect Dis. 2010;16:5536. DOIPubMedGoogle Scholar
  7. Morrison  AC, Forshey  BM, Notyce  D, Astete  H, Lopez  V, Rocha  C, et al. Venezuelan equine encephalitis virus in Iquitos, Peru: urban transmission of a sylvatic strain. PLoS Negl Trop Dis. 2008;2:e349. DOIPubMedGoogle Scholar
  8. Aguilar  PV, Adams  AP, Suárez  V, Beingolea  L, Vargas  J, Manock  S, et al. Genetic characterization of Venezuelan equine encephalitis virus from Bolivia, Ecuador and Peru: identification of a new subtype ID lineage. PLoS Negl Trop Dis. 2009;3:e514. DOIPubMedGoogle Scholar
  9. Plasencia-Dueñas  R, Failoc-Rojas  VE, Rodriguez-Morales  AJ. Impact of the COVID-19 pandemic on the incidence of dengue fever in Peru. J Med Virol. 2022;94:3938. DOIPubMedGoogle Scholar
  10. Grywna  K, Kupfer  B, Panning  M, Drexler  JF, Emmerich  P, Drosten  C, et al. Detection of all species of the genus Alphavirus by reverse transcription-PCR with diagnostic sensitivity. J Clin Microbiol. 2010;48:33867. DOIPubMedGoogle Scholar
  11. Forrester  NL, Wertheim  JO, Dugan  VG, Auguste  AJ, Lin  D, Adams  AP, et al. Evolution and spread of Venezuelan equine encephalitis complex alphavirus in the Americas. PLoS Negl Trop Dis. 2017;11:e0005693. DOIPubMedGoogle Scholar
  12. Fischer  C, Jo  WK, Haage  V, Moreira-Soto  A, de Oliveira Filho  EF, Drexler  JF. Challenges towards serologic diagnostics of emerging arboviruses. Clin Microbiol Infect. 2021;27:12219. DOIPubMedGoogle Scholar
  13. Postigo-Hidalgo  I, Jo  WK, Pedroso  C, Brites  C, Drexler  JF. Introduction of chikungunya virus in coastal northeast Brazil. Lancet Microbe. 2023;4:e764. DOIPubMedGoogle Scholar
  14. Carrera  JP, Forrester  N, Wang  E, Vittor  AY, Haddow  AD, López-Vergès  S, et al. Eastern equine encephalitis in Latin America. N Engl J Med. 2013;369:73244. DOIPubMedGoogle Scholar
  15. Moreira-Soto  A, Bruno  A, de Mora  D, Paez  M, Garces  J, Wulf  B, et al. Virological evidence of the impact of non-pharmaceutical interventions against COVID-19 in Ecuador, a resource-limited setting. Emerg Microbes Infect. 2023;12:2259001. DOIPubMedGoogle Scholar

Main Article

Page created: March 18, 2025
Page updated: April 14, 2025
Page reviewed: April 14, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external