Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 30, Number 10—October 2024
Research

Early Introductions of Candida auris Detected by Wastewater Surveillance, Utah, USA, 2022–2023

Jorge Chavez12, Katherine Crank1, Casey Barber, Daniel Gerrity, Thomas Iverson, Joshua Mongillo3, Angela Weil, Linda Rider, Nathan Lacross, Kelly Oakeson, and Alessandro RossiComments to Author 
Author affiliations: Utah Department of Health and Human Services, Salt Lake City, Utah, USA (J. Chavez, T. Iverson, J. Mongillo, A. Weil, L. Rider, N. Lacross, K. Oakeson, A. Rossi); Southern Nevada Water Authority, Las Vegas, Nevada, USA (K. Crank, C. Barber, D. Gerrity)

Main Article

Table 2

Candida auris shedding model parameters and distributions

Parameter Unit Reported value Assumed distribution Reference Assumption
C. auris fecal shedding rate
CFU/μL
104–105
Uniform: min = 104, max = 105
(19)
Based on neutropenic mouse model
Daily wet stool production
g/day

Truncated: log-normal (base e): μ = 4.763, σ = 0.471, min = 0, max = 520
(20)
Based on healthy persons
Wet fecal density
g/mL
1.06
Point value: 1.06
(21)
NA
C. auris urine shedding rate
CFU/μL
102–104
Uniform: min = 102, max = 104
(22)
Based on the clinical definition of UTI for clean catch collection (e.g., >102 CFU/μL)
Daily urine production
L/day

Gamma: shape = 5.315, scale = 0.25, offset = +0.5
(23)
Based on healthy persons
C. auris qPCR:culture
(GC:CFU)
unitless
3–50
Uniform: min = 3, max = 50
(24)
Based on the analysis of several NCBI deposited C. auris genomes and a value reported for C. albicans
Average WWTP flow rate mgd 12.73 ± 0.87 Normal: μ = 12.73, σ = 0.87 NA NA

*GC, gene copies; mgd, million gallons/day; NA, no assumption made; NCBI, National Center for Biotechnology Information; qPCR, quantitative PCR; UTI, urinary tract infection; WWTP, wastewater treatment plant.

Main Article

References
  1. Lone  SA, Ahmad  A. Candida auris-the growing menace to global health. Mycoses. 2019;62:62037. DOIPubMedGoogle Scholar
  2. Welsh  RM, Bentz  ML, Shams  A, Houston  H, Lyons  A, Rose  LJ, et al. Survival, persistence, and isolation of the emerging multidrug-resistant pathogenic yeast Candida auris on a plastic health care surface. J Clin Microbiol. 2017;55:29963005. DOIPubMedGoogle Scholar
  3. Ku  TSN, Walraven  CJ, Lee  SA. Candida auris: disinfectants and implications for infection control. Front Microbiol. 2018;9:726. DOIPubMedGoogle Scholar
  4. Lockhart  SR, Etienne  KA, Vallabhaneni  S, Farooqi  J, Chowdhary  A, Govender  NP, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64:13440. DOIPubMedGoogle Scholar
  5. Chow  NA, de Groot  T, Badali  H, Abastabar  M, Chiller  TM, Meis  JF. Potential fifth clade of Candida auris, Iran, 2018. Emerg Infect Dis. 2019;25:17801. DOIPubMedGoogle Scholar
  6. Vallabhaneni  S, Kallen  A, Tsay  S, Chow  N, Welsh  R, Kerins  J, et al.; MSD. MSD. Investigation of the first seven reported cases of Candida auris, a globally emerging invasive, multidrug-resistant fungus—United States, May 2013–August 2016. MMWR Morb Mortal Wkly Rep. 2016;65:12347. DOIPubMedGoogle Scholar
  7. Lyman  M, Forsberg  K, Sexton  DJ, Chow  NA, Lockhart  SR, Jackson  BR, et al. Worsening spread of Candida auris in the United States, 2019 to 2021. Ann Intern Med. 2023;176:48995. DOIPubMedGoogle Scholar
  8. Thoma  R, Seneghini  M, Seiffert  SN, Vuichard Gysin  D, Scanferla  G, Haller  S, et al. The challenge of preventing and containing outbreaks of multidrug-resistant organisms and Candida auris during the coronavirus disease 2019 pandemic: report of a carbapenem-resistant Acinetobacter baumannii outbreak and a systematic review of the literature. Antimicrob Resist Infect Control. 2022;11:12. DOIPubMedGoogle Scholar
  9. Saleem  Z, Godman  B, Hassali  MA, Hashmi  FK, Azhar  F, Rehman  IU. Point prevalence surveys of health-care-associated infections: a systematic review. Pathog Glob Health. 2019;113:191205. DOIPubMedGoogle Scholar
  10. Wang  TZ, White  KN, Scarr  JV, Simon  MS, Calfee  DP. Preparing your healthcare facility for the new fungus among us: An infection preventionist’s guide to Candida auris. Am J Infect Control. 2020;48:8257. DOIPubMedGoogle Scholar
  11. Vo  V, Tillett  RL, Papp  K, Shen  S, Gu  R, Gorzalski  A, et al. Use of wastewater surveillance for early detection of Alpha and Epsilon SARS-CoV-2 variants of concern and estimation of overall COVID-19 infection burden. Sci Total Environ. 2022;835:155410. DOIPubMedGoogle Scholar
  12. Gupta  P, Liao  S, Ezekiel  M, Novak  N, Rossi  A, LaCross  N, et al. Wastewater genomic surveillance captures early detection of omicron in Utah. Microbiol Spectr. 2023;11:e0039123. DOIPubMedGoogle Scholar
  13. Ryerson  AB, Lang  D, Alazawi  MA, Neyra  M, Hill  DT, St George  K, et al.; 2022 U.S. Poliovirus Response Team. 2022 U.S. Poliovirus Response Team. Wastewater testing and detection of poliovirus type 2 genetically linked to virus isolated from a paralytic polio case—New York, March 9–October 11, 2022. MMWR Morb Mortal Wkly Rep. 2022;71:141824. DOIPubMedGoogle Scholar
  14. Rossi  A, Chavez  J, Iverson  T, Hergert  J, Oakeson  K, LaCross  N, et al. Candida auris discovery through community wastewater surveillance during healthcare outbreak, Nevada, USA, 2022. Emerg Infect Dis. 2023;29:4225. DOIPubMedGoogle Scholar
  15. Barber  C, Crank  K, Papp  K, Innes  GK, Schmitz  BW, Chavez  J, et al. Community-scale wastewater surveillance of Candida auris during an ongoing outbreak in southern Nevada. Environ Sci Technol. 2023;57:175563. DOIPubMedGoogle Scholar
  16. Babler  K, Sharkey  M, Arenas  S, Amirali  A, Beaver  C, Comerford  S, et al. Detection of the clinically persistent, pathogenic yeast spp. Candida auris from hospital and municipal wastewater in Miami-Dade County, Florida. Sci Total Environ. 2023;898:165459. DOIPubMedGoogle Scholar
  17. Chini  CMS, Stillwell  AS. The state of U.S. urban water: data and the energy-water nexus. Water Resour Res. 2018;54:1796811. DOIGoogle Scholar
  18. Bagal  UR, Phan  J, Welsh  RM, Misas  E, Wagner  D, Gade  L, et al. MycoSNP: A portable workflow for performing whole-genome sequencing analysis of Candida auris. Methods Mol Biol. 2022;2517:21528. DOIPubMedGoogle Scholar
  19. Torres  SR, Pichowicz  A, Torres-Velez  F, Song  R, Singh  N, Lasek-Nesselquist  E, et al. Impact of Candida auris infection in a neutropenic murine model. Antimicrob Agents Chemother. 2020;64:e0162519. DOIPubMedGoogle Scholar
  20. Rose  C, Parker  A, Jefferson  B, Cartmell  E. The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit Rev Environ Sci Technol. 2015;45:182779. DOIPubMedGoogle Scholar
  21. Penn  R, Ward  BJ, Strande  L, Maurer  M. Review of synthetic human faeces and faecal sludge for sanitation and wastewater research. Water Res. 2018;132:22240. DOIPubMedGoogle Scholar
  22. Croxatto  A, Dijkstra  K, Prod’hom  G, Greub  G. Comparison of inoculation with the InoqulA and WASP automated systems with manual inoculation. J Clin Microbiol. 2015;53:2298307. DOIPubMedGoogle Scholar
  23. Rauch  W, Brockmann  D, Peters  I, Larsen  TA, Gujer  W. Combining urine separation with waste design: an analysis using a stochastic model for urine production. Water Res. 2003;37:6819. DOIPubMedGoogle Scholar
  24. Jones  T, Federspiel  NA, Chibana  H, Dungan  J, Kalman  S, Magee  BB, et al. The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A. 2004;101:732934. DOIPubMedGoogle Scholar
  25. Whipple  A, Jackson  J, Ridderhoff  J, Nakashima  AK. Piloting electronic case reporting for improved surveillance of sexually transmitted diseases in Utah. Online J Public Health Inform. 2019;11:e7. DOIPubMedGoogle Scholar
  26. Zhu  Y, O’Brien  B, Leach  L, Clarke  A, Bates  M, Adams  E, et al. Laboratory analysis of an outbreak of Candida auris in New York from 2016 to 2018: impact and lessons learned. J Clin Microbiol. 2020;58:e0150319. DOIPubMedGoogle Scholar
  27. Leach  L, Russell  A, Zhu  Y, Chaturvedi  S, Chaturvedi  V. A rapid and automated sample-to-result Candida auris real-time PCR assay for high-throughput testing of surveillance samples with the BD Max Open System. J Clin Microbiol. 2019;57:e0063019. DOIPubMedGoogle Scholar
  28. Crank  K, Chen  W, Bivins  A, Lowry  S, Bibby  K. Contribution of SARS-CoV-2 RNA shedding routes to RNA loads in wastewater. Sci Total Environ. 2022;806:150376. DOIPubMedGoogle Scholar
  29. Altschul  SF, Gish  W, Miller  W, Myers  EW, Lipman  DJ. Basic local alignment search tool. J Mol Biol. 1990;215:40310. DOIPubMedGoogle Scholar
  30. Leach  L, Zhu  Y, Chaturvedi  S. Development and validation of a real-time PCR assay for rapid detection of Candida auris from surveillance samples. J Clin Microbiol. 2018;56:e0122317. DOIPubMedGoogle Scholar
  31. Proctor  DM, Dangana  T, Sexton  DJ, Fukuda  C, Yelin  RD, Stanley  M, et al.; NISC Comparative Sequencing Program. Integrated genomic, epidemiologic investigation of Candida auris skin colonization in a skilled nursing facility. Nat Med. 2021;27:14019. DOIPubMedGoogle Scholar
  32. Du  H, Bing  J, Hu  T, Ennis  CL, Nobile  CJ, Huang  G. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog. 2020;16:e1008921. DOIPubMedGoogle Scholar
  33. Plano  LR, Garza  AC, Shibata  T, Elmir  SM, Kish  J, Sinigalliano  CD, et al. Shedding of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus from adult and pediatric bathers in marine waters. BMC Microbiol. 2011;11:5. DOIPubMedGoogle Scholar
  34. Griffith  N, Danziger  L. Candida auris urinary tract infections and possible treatment. Antibiotics (Basel). 2020;9:898. DOIPubMedGoogle Scholar
  35. Sayeed  MA, Farooqi  J, Jabeen  K, Awan  S, Mahmood  SF. Clinical spectrum and factors impacting outcome of Candida auris: a single center study from Pakistan. BMC Infect Dis. 2019;19:384. DOIPubMedGoogle Scholar
  36. Piatti  G, Sartini  M, Cusato  C, Schito  AM. Colonization by Candida auris in critically ill patients: role of cutaneous and rectal localization during an outbreak. J Hosp Infect. 2022;120:859. DOIPubMedGoogle Scholar
  37. Gerrity  D, Papp  K, Stoker  M, Sims  A, Frehner  W. Early-pandemic wastewater surveillance of SARS-CoV-2 in Southern Nevada: Methodology, occurrence, and incidence/prevalence considerations. Water Res X. 2021;10:100086. DOIPubMedGoogle Scholar
  38. McLellan  SL, Roguet  A. The unexpected habitat in sewer pipes for the propagation of microbial communities and their imprint on urban waters. Curr Opin Biotechnol. 2019;57:3441. DOIPubMedGoogle Scholar
  39. Day  AM, McNiff  MM, da Silva Dantas  A, Gow  NAR, Quinn  J. Hog1 regulates stress tolerance and virulence in the emerging fungal pathogen Candida auris. mSphere. 2018;3:e0050618. DOIPubMedGoogle Scholar
  40. Eyre  DW, Sheppard  AE, Madder  H, Moir  I, Moroney  R, Quan  TP, et al. A Candida auris outbreak and its control in an intensive care setting. N Engl J Med. 2018;379:132231. DOIPubMedGoogle Scholar
  41. Roberts  SC, Zembower  TR, Ozer  EA, Qi  C. Genetic evaluation of nosocomial Candida auris transmission. J Clin Microbiol. 2021;59:e0225220. DOIPubMedGoogle Scholar
  42. Chow  NA, Gade  L, Tsay  SV, Forsberg  K, Greenko  JA, Southwick  KL, et al.; US Candida auris Investigation Team. Multiple introductions and subsequent transmission of multidrug-resistant Candida auris in the USA: a molecular epidemiological survey. Lancet Infect Dis. 2018;18:137784. DOIPubMedGoogle Scholar
  43. Huang  X, Welsh  RM, Deming  C, Proctor  DM, Thomas  PJ, Gussin  GM, et al.; NISC Comparative Sequencing Program. Skin metagenomic sequence analysis of early Candida auris outbreaks in U.S. nursing homes. mSphere. 2021;6:e0028721. DOIPubMedGoogle Scholar

Main Article

1These first authors contributed equally to this article.

2Current affiliation: Center for Disease Control and Prevention, Atlanta, Georgia, USA.

3Current affiliation: North Carolina Department of Health and Human Services, Wilmington, North Carolina, USA.

Page created: August 28, 2024
Page updated: September 23, 2024
Page reviewed: September 23, 2024
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external