Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 4, Number 2—June 1998
Dispatch

Dual Infection with Ehrlichia chaffeensis and a Spotted Fever Group Rickettsia: A Case Report

Daniel J. Sexton*Comments to Author , G. Ralph Corey*, Christopher Carpenter*, Li Quo Kong*, Tejel Gandhi*, Edward B. Breitschwerdt†, Barbara C. Hegarty†, Sheng-Ming Chen‡, Hui-Min Feng‡, Li Zhao‡, Juan Olano‡, David H. Walker‡, and Stephen J. Dumler§
Author affiliations: *Duke University Medical Center, Durham, North Carolina, USA; †North Carolina State University, Raleigh, North Carolina, USA; ‡University of Texas Medical Branch at Galveston, Galveston, Texas, USA; §Johns Hopkins Medical Center, Baltimore, Maryland, USA

Main Article

Figure

Polymerase chain reaction (PCR) products. A. With primers for the NadA gene. Lane 1: Patient's sample with an approximately 1.02-kb product; Lane 2: Negative control; Lane 3: Positive control. Ehrlichia chaffeensis (Arkansas strain)–infected DH82 cells; Lane 4: Molecular size markers: fX174 phage DNA cleaved with HaeIII. B. With nested primers for the 120 kDa protein gene. Lane 1: Patient's sample with an approximately 1.1-kb product; Lane 2: Positive control. E. chaffeensis (Sapulpa strain)–DH8

Figure. Polymerase chain reaction (PCR) products. A. With primers for the NadA gene. Lane 1: Patient's sample with an approximately 1.02-kb product; Lane 2: Negative control; Lane 3: Positive control. Ehrlichia chaffeensis (Arkansas strain)–infected DH82 cells; Lane 4: Molecular size markers: fX174 phage DNA cleaved with HaeIII. B. With nested primers for the 120 kDa protein gene. Lane 1: Patient's sample with an approximately 1.1-kb product; Lane 2: Positive control. E. chaffeensis (Sapulpa strain)–DH82 infected cells; Lane 3: Positive control. E. chaffeensis (Arkansas strain)–infected DH82 cells; Lane 4: Molecular size markers: fX174 phage DNA cleaved with HaeIII. Amplification conditions. Ten microliters of the patient's DNA was added to a 90-µl PCR reaction tube containing 10 µl of 10X PCR buffer (Boehringer Mannheim, Indianapolis, IN), 1 µl of PCR primers ECHNADA1 and pXCR6, final concentration 1 µM each; 2 µl deoxynucleotide triphosphates (final concentration, 200 µM); and 1 µl of Taq polymerase (Boehringer Mannheim, Indianapolis, IN). Water was added to bring the volume to 100 µl. The mixture was placed in a Progene FPROGO2Y thermocycler (Techne, Princeton, NJ). A DNA lysate prepared from E. chaffeensis-infected DH82 cells was used as a positive control. The cycling program consisted of 3 min at 94°C followed by 30 cycles, each of 30 sec at 94°C, 1 min at 55°C, and 2 min at 72°C, and an additional cycle with an extension step of 3 min at 72°C. To confirm the identity of the PCR product, we sequenced the 590 bp of the nadA gene product. After amplification, the PCR products were purified by QIAquick, a PCR purification kit (QIAgen, Santa Clarita, CA). The nucleotide sequence was then determined by the dideoxynucleotide method of cycle sequencing with Taq polymerase (ABI Prism 377 DNA sequencer, Perkin-Elmer Corp., Foster City, CA). The sequencing reaction was carried out for each strand of DNA. The sequencing data were analyzed by Genetics Computer Group, Wisconsin Package software; 99.8% identity of the 590-bp overlap with nadA nucleotide sequence of Arkansas strain (Gen Bank accession number U90900) was obtained (8).

Main Article

References
  1. Nadelman  RB, Horowitz  HW, Hsieh  T-C, Wu  JM, Aguero-Rosenfeld  ME, Schwartz  I, Simultaneous human granulocytic ehrlichiosis and Lyme borreliosis. N Engl J Med. 1997;337:2730. DOIPubMedGoogle Scholar
  2. Krause  PJ, Telford  SR III, Spielman  A, Sikand  V, Ryan  R, Christianson  D, Concurrent Lyme disease and babesiosis: evidence for increased severity and duration of illness. JAMA. 1996;275:165760. DOIPubMedGoogle Scholar
  3. Procop  GW, Burchette  JL, Howell  DN, Sexton  DJ. Immunoperoxidase and immunofluorescent staining of Rickettsia rickettsii in skin biopsy. A comparative study. Arch Pathol Lab Med. 1997;121:8949.PubMedGoogle Scholar
  4. Philip  RN, Casper  EA, Ormsbee  RA, Peacock  MG, Burgdorfer  W. Microimmunofluorescence test for the serological study of Rocky Mountain spotted fever and typhus. J Clin Microbiol. 1976;3:5161.PubMedGoogle Scholar
  5. Dawson  JE, Rikihisa  Y, Ewing  SA, Fishbein  DB. Serologic diagnosis of human ehrlichiosis using two Ehrlichia canis isolates. J Infect Dis. 1991;163:5647.PubMedGoogle Scholar
  6. Lange  JV, Walker  DH, Wester  TB. Documented Rocky Mountain spotted fever in wintertime. JAMA. 1982;247:24034. DOIPubMedGoogle Scholar
  7. Iqbal  Z, Rikihisa  Y. Re-isolation of Ehrlichia canis from blood and tissue of dogs after doxycyline treatment. J Clin Microbiol. 1994;32:16449.PubMedGoogle Scholar
  8. Xu  X-J, Walker  DH. Sequence and characterization of an Ehrlichia chaffeensis gene encoding 314 amino acids highly homologous to the NAD A enzyme. FEMS Microbiol Lett. 1997;154:538. DOIPubMedGoogle Scholar
  9. Xu  X-J, Crocquet-Valdes  PA, Walker  DH. Cloning and sequencing of the gene for 120-kDA immunodominant surface protein of Ehrlichia chaffeensis. Gene. 1997;184:14954. DOIPubMedGoogle Scholar
  10. Xu  X-J, Piesman  JF, Olson  JG, Walker  DH. Geographic distribution of different genetic types of Ehrlichia chaffeensis. Am J Trop Med Hyg. 1997;56:67980.PubMedGoogle Scholar
  11. Sexton  DJ, Corey  GR. Rocky Mountain spotless and almost spotless fever: a wolf in sheep's clothing. Clin Infect Dis. 1992;15:43948.PubMedGoogle Scholar
  12. Anderson  BE, Sims  KG, Olson  JG, Childs  JE, Piesman  JF, Happ  CM, Amblyomma americanum: a potential vector of human ehrlichiosis. Am J Trop Med Hyg. 1993;49:23944.PubMedGoogle Scholar
  13. Schubert  JH. Serologic titers in rickettsial infection as affected by antibiotic treatment. Pub Health Lab. 1952;10:3841.
  14. Davis  JP, Wilfert  CM, Sexton  DJ, Burgdorfer  W, Casper  EA, Philip  RN. Serologic comparison of R. rickettsii isolated from patients in Montana and North Carolina. In: Rickettsiae and rickettsial diseases. New York: Academic Press, Inc.; 1981 p. 139-47.
  15. Pancholi  P, Kolbert  CP, Mitchell  PD, Reed  KD Jr, Dumler  JS, Bakken  JS, Ixodes dammini as a potential vector of human granulocytic ehrlichiosis. J Infect Dis. 1995;172:100712.PubMedGoogle Scholar
  16. Telford  SR III, Dawson  JE, Katavolos  P, Warner  CK, Kolbert  CP, Persing  DH. Perpetuation of the agent of human granulocytic ehrlichiosis in a deer tick-rodent cycle. Proc Natl Acad Sci U S A. 1996;93:620914. DOIPubMedGoogle Scholar
  17. Schwartz  I, Fish  D, Daniels  TJ. Prevalence of the rickettsial agent of human granulocytic ehrlichiosis in ticks from a hyperendemic focus of Lyme disease. N Engl J Med. 1997;336:4950. DOIGoogle Scholar
  18. Ewing  SA, Dawson  JE, Kocan  AA, Barker  RW, Warner  CK, Panciera  RJ, Experimental transmission of Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) among white-tailed deer by Amblyomma americanum (Acarei: Ixodidae). J Med Entomol. 1995;32:36874.PubMedGoogle Scholar
  19. Anderson  BE, Sumner  JW, Dawson  JE, Tzianabos  T, Greene  CR, Olson  JC, Detection of the etiologic agent of human ehrlichiosis by polymerase chain reaction. J Clin Microbiol. 1992;30:77580.PubMedGoogle Scholar
  20. Dawson  JE, Fishbein  DB, Eng  TR, Redus  MA, Greene  NR. Diagnosis of human ehrlichiosis with the indirect fluorescent antibody test: kinetics and specificity. J Infect Dis. 1990;162:915.PubMedGoogle Scholar

Main Article

Page created: December 15, 2010
Page updated: December 15, 2010
Page reviewed: December 15, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external