Synopses
Identifying and Reducing Remaining Stocks of Rinderpest Virus
In 2011, the world was declared free from rinderpest, one of the most feared and devastating infectious diseases of animals. Rinderpest is the second infectious disease, after smallpox, to have been eradicated. However, potentially infectious rinderpest virus material remains widely disseminated among research and diagnostic facilities across the world and poses a risk for disease recurrence should it be released. Member Countries of the World Organisation for Animal Health and the Food and Agricultural Organization of the United Nations are committed to destroying remaining stocks of infectious material or ensuring that it is stored under international supervision in a limited number of approved facilities. To facilitate this commitment and maintain global freedom from rinderpest, World Organisation for Animal Health Member Countries must report annually on rinderpest material held in their countries. The first official surveys, conducted during 2013–2015, revealed that rinderpest material was stored in an unacceptably high number of facilities and countries.
EID | Hamilton K, Visser D, Evans B, Vallat B. Identifying and Reducing Remaining Stocks of Rinderpest Virus. Emerg Infect Dis. 2015;21(12):2117-2121. https://doi.org/10.3201/eid2112.150227 |
---|---|
AMA | Hamilton K, Visser D, Evans B, et al. Identifying and Reducing Remaining Stocks of Rinderpest Virus. Emerging Infectious Diseases. 2015;21(12):2117-2121. doi:10.3201/eid2112.150227. |
APA | Hamilton, K., Visser, D., Evans, B., & Vallat, B. (2015). Identifying and Reducing Remaining Stocks of Rinderpest Virus. Emerging Infectious Diseases, 21(12), 2117-2121. https://doi.org/10.3201/eid2112.150227. |
Opportunistic Pulmonary Bordetella hinzii Infection after Avian Exposure
We report 2 cases of pulmonary Bordetella hinzii infection in immunodeficient patients. One of these rare cases demonstrated the potential transmission of the bacteria from an avian reservoir through occupational exposure and its persistence in humans. We establish bacteriologic management of these infections and suggest therapeutic options if needed.
EID | Fabre A, Dupin C, Bénézit F, Goret J, Piau C, Jouneau S, et al. Opportunistic Pulmonary Bordetella hinzii Infection after Avian Exposure. Emerg Infect Dis. 2015;21(12):2122-2126. https://doi.org/10.3201/eid2112.150400 |
---|---|
AMA | Fabre A, Dupin C, Bénézit F, et al. Opportunistic Pulmonary Bordetella hinzii Infection after Avian Exposure. Emerging Infectious Diseases. 2015;21(12):2122-2126. doi:10.3201/eid2112.150400. |
APA | Fabre, A., Dupin, C., Bénézit, F., Goret, J., Piau, C., Jouneau, S....Guiso, N. (2015). Opportunistic Pulmonary Bordetella hinzii Infection after Avian Exposure. Emerging Infectious Diseases, 21(12), 2122-2126. https://doi.org/10.3201/eid2112.150400. |
Research
Zoonotic Leprosy in the Southeastern United States
Nine-banded armadillos (Dasypus novemcinctus) are naturally infected with Mycobacterium leprae and have been implicated in zoonotic transmission of leprosy. Early studies found this disease mainly in Texas and Louisiana, but armadillos in the southeastern United States appeared to be free of infection. We screened 645 armadillos from 8 locations in the southeastern United States not known to harbor enzootic leprosy for M. leprae DNA and antibodies. We found M. leprae–infected armadillos at each location, and 106 (16.4%) animals had serologic/PCR evidence of infection. Using single-nucleotide polymorphism variable number tandem repeat genotyping/genome sequencing, we detected M. leprae genotype 3I-2-v1 among 35 armadillos. Seven armadillos harbored a newly identified genotype (3I-2-v15). In comparison, 52 human patients from the same region were infected with 31 M. leprae types. However, 42.3% (22/52) of patients were infected with 1 of the 2 M. leprae genotype strains associated with armadillos. The geographic range and complexity of zoonotic leprosy is expanding.
EID | Sharma R, Singh P, Loughry W, Lockhart J, Inman W, Duthie MS, et al. Zoonotic Leprosy in the Southeastern United States. Emerg Infect Dis. 2015;21(12):2127-2134. https://doi.org/10.3201/eid2112.150501 |
---|---|
AMA | Sharma R, Singh P, Loughry W, et al. Zoonotic Leprosy in the Southeastern United States. Emerging Infectious Diseases. 2015;21(12):2127-2134. doi:10.3201/eid2112.150501. |
APA | Sharma, R., Singh, P., Loughry, W., Lockhart, J., Inman, W., Duthie, M. S....Truman, R. W. (2015). Zoonotic Leprosy in the Southeastern United States. Emerging Infectious Diseases, 21(12), 2127-2134. https://doi.org/10.3201/eid2112.150501. |
Infection Risk for Persons Exposed to Highly Pathogenic Avian Influenza A H5 Virus–Infected Birds, United States, December 2014–March 2015
Newly emerged highly pathogenic avian influenza (HPAI) A H5 viruses have caused outbreaks among birds in the United States. These viruses differ genetically from HPAI H5 viruses that previously caused human illness, most notably in Asia and Africa. To assess the risk for animal-to-human HPAI H5 virus transmission in the United States, we determined the number of persons with self-reported exposure to infected birds, the number with an acute respiratory infection (ARI) during a 10-day postexposure period, and the number with ARI who tested positive for influenza by real-time reverse transcription PCR or serologic testing for each outbreak during December 15, 2014–March 31, 2015. During 60 outbreaks in 13 states, a total of 164 persons were exposed to infected birds. ARI developed in 5 of these persons within 10 days of exposure. H5 influenza virus infection was not identified in any persons with ARI, suggesting a low risk for animal-to-human HPAI H5 virus transmission.
EID | Arriola CS, Nelson DI, DeLiberto TJ, Blanton L, Kniss K, Levine MZ, et al. Infection Risk for Persons Exposed to Highly Pathogenic Avian Influenza A H5 Virus–Infected Birds, United States, December 2014–March 2015. Emerg Infect Dis. 2015;21(12):2135-2140. https://doi.org/10.3201/eid2112.150904 |
---|---|
AMA | Arriola CS, Nelson DI, DeLiberto TJ, et al. Infection Risk for Persons Exposed to Highly Pathogenic Avian Influenza A H5 Virus–Infected Birds, United States, December 2014–March 2015. Emerging Infectious Diseases. 2015;21(12):2135-2140. doi:10.3201/eid2112.150904. |
APA | Arriola, C. S., Nelson, D. I., DeLiberto, T. J., Blanton, L., Kniss, K., Levine, M. Z....Jhung, M. (2015). Infection Risk for Persons Exposed to Highly Pathogenic Avian Influenza A H5 Virus–Infected Birds, United States, December 2014–March 2015. Emerging Infectious Diseases, 21(12), 2135-2140. https://doi.org/10.3201/eid2112.150904. |
High Prevalence of Intermediate Leptospira spp. DNA in Febrile Humans from Urban and Rural Ecuador
Leptospira spp., which comprise 3 clusters (pathogenic, saprophytic, and intermediate) that vary in pathogenicity, infect >1 million persons worldwide each year. The disease burden of the intermediate leptospires is unclear. To increase knowledge of this cluster, we used new molecular approaches to characterize Leptospira spp. in 464 samples from febrile patients in rural, semiurban, and urban communities in Ecuador; in 20 samples from nonfebrile persons in the rural community; and in 206 samples from animals in the semiurban community. We observed a higher percentage of leptospiral DNA–positive samples from febrile persons in rural (64%) versus urban (21%) and semiurban (25%) communities; no leptospires were detected in nonfebrile persons. The percentage of intermediate cluster strains in humans (96%) was higher than that of pathogenic cluster strains (4%); strains in animal samples belonged to intermediate (49%) and pathogenic (51%) clusters. Intermediate cluster strains may be causing a substantial amount of fever in coastal Ecuador.
EID | Chiriboga J, Barragan V, Arroyo G, Sosa A, Birdsell DN, España K, et al. High Prevalence of Intermediate Leptospira spp. DNA in Febrile Humans from Urban and Rural Ecuador. Emerg Infect Dis. 2015;21(12):2141-2147. https://doi.org/10.3201/eid2112.140659 |
---|---|
AMA | Chiriboga J, Barragan V, Arroyo G, et al. High Prevalence of Intermediate Leptospira spp. DNA in Febrile Humans from Urban and Rural Ecuador. Emerging Infectious Diseases. 2015;21(12):2141-2147. doi:10.3201/eid2112.140659. |
APA | Chiriboga, J., Barragan, V., Arroyo, G., Sosa, A., Birdsell, D. N., España, K....Trueba, G. (2015). High Prevalence of Intermediate Leptospira spp. DNA in Febrile Humans from Urban and Rural Ecuador. Emerging Infectious Diseases, 21(12), 2141-2147. https://doi.org/10.3201/eid2112.140659. |
Historical Review
Biological Warfare Plan in the 17th Century—the Siege of Candia, 1648–1669
A little-known effort to conduct biological warfare occurred during the 17th century. The incident transpired during the Venetian–Ottoman War, when the city of Candia (now Heraklion, Greece) was under siege by the Ottomans (1648–1669). The data we describe, obtained from the Archives of the Venetian State, are related to an operation organized by the Venetian Intelligence Services, which aimed at lifting the siege by infecting the Ottoman soldiers with plague by attacking them with a liquid made from the spleens and buboes of plague victims. Although the plan was perfectly organized, and the deadly mixture was ready to use, the attack was ultimately never carried out. The conception and the detailed cynical planning of the attack on Candia illustrate a dangerous way of thinking about the use of biological weapons and the absence of reservations when potential users, within their religious framework, cast their enemies as undeserving of humanitarian consideration.
EID | Thalassinou E, Tsiamis C, Poulakou-Rebelakou E, Hatzakis A. Biological Warfare Plan in the 17th Century—the Siege of Candia, 1648–1669. Emerg Infect Dis. 2015;21(12):2148-2153. https://doi.org/10.3201/eid2112.130822 |
---|---|
AMA | Thalassinou E, Tsiamis C, Poulakou-Rebelakou E, et al. Biological Warfare Plan in the 17th Century—the Siege of Candia, 1648–1669. Emerging Infectious Diseases. 2015;21(12):2148-2153. doi:10.3201/eid2112.130822. |
APA | Thalassinou, E., Tsiamis, C., Poulakou-Rebelakou, E., & Hatzakis, A. (2015). Biological Warfare Plan in the 17th Century—the Siege of Candia, 1648–1669. Emerging Infectious Diseases, 21(12), 2148-2153. https://doi.org/10.3201/eid2112.130822. |
Dispatches
Asymptomatic MERS-CoV Infection in Humans Possibly Linked to Infected Dromedaries Imported from Oman to United Arab Emirates, May 2015
In May 2015 in United Arab Emirates, asymptomatic Middle East respiratory syndrome coronavirus infection was identified through active case finding in 2 men with exposure to infected dromedaries. Epidemiologic and virologic findings suggested zoonotic transmission. Genetic sequences for viruses from the men and camels were similar to those for viruses recently detected in other countries.
EID | Al Hammadi ZM, Chu D, Eltahir YM, Al Hosani F, Al Mulla M, Tarnini W, et al. Asymptomatic MERS-CoV Infection in Humans Possibly Linked to Infected Dromedaries Imported from Oman to United Arab Emirates, May 2015. Emerg Infect Dis. 2015;21(12):2197-2200. https://doi.org/10.3201/eid2112.151132 |
---|---|
AMA | Al Hammadi ZM, Chu D, Eltahir YM, et al. Asymptomatic MERS-CoV Infection in Humans Possibly Linked to Infected Dromedaries Imported from Oman to United Arab Emirates, May 2015. Emerging Infectious Diseases. 2015;21(12):2197-2200. doi:10.3201/eid2112.151132. |
APA | Al Hammadi, Z. M., Chu, D., Eltahir, Y. M., Al Hosani, F., Al Mulla, M., Tarnini, W....Poon, L. (2015). Asymptomatic MERS-CoV Infection in Humans Possibly Linked to Infected Dromedaries Imported from Oman to United Arab Emirates, May 2015. Emerging Infectious Diseases, 21(12), 2197-2200. https://doi.org/10.3201/eid2112.151132. |
Hendra Virus Infection in Dog, Australia, 2013
Hendra virus occasionally causes severe disease in horses and humans. In Australia in 2013, infection was detected in a dog that had been in contact with an infected horse. Abnormalities and viral RNA were found in the dog’s kidney, brain, lymph nodes, spleen, and liver. Dogs should be kept away from infected horses.
EID | Kirkland PD, Gabor M, Poe I, Neale K, Chaffey K, Finlaison DS, et al. Hendra Virus Infection in Dog, Australia, 2013. Emerg Infect Dis. 2015;21(12):2182-2185. https://doi.org/10.3201/eid2112.151324 |
---|---|
AMA | Kirkland PD, Gabor M, Poe I, et al. Hendra Virus Infection in Dog, Australia, 2013. Emerging Infectious Diseases. 2015;21(12):2182-2185. doi:10.3201/eid2112.151324. |
APA | Kirkland, P. D., Gabor, M., Poe, I., Neale, K., Chaffey, K., Finlaison, D. S....Middleton, D. (2015). Hendra Virus Infection in Dog, Australia, 2013. Emerging Infectious Diseases, 21(12), 2182-2185. https://doi.org/10.3201/eid2112.151324. |
Replication Capacity of Avian Influenza A(H9N2) Virus in Pet Birds and Mammals, Bangladesh
Avian influenza A(H9N2) is an agricultural and public health threat. We characterized an H9N2 virus from a pet market in Bangladesh and demonstrated replication in samples from pet birds, swine tissues, human airway and ocular cells, and ferrets. Results implicated pet birds in the potential dissemination and zoonotic transmission of this virus.
EID | Lenny BJ, Shanmuganatham K, Sonnberg S, Feeroz MM, Alam S, Hasan M, et al. Replication Capacity of Avian Influenza A(H9N2) Virus in Pet Birds and Mammals, Bangladesh. Emerg Infect Dis. 2015;21(12):2174-2177. https://doi.org/10.3201/eid2112.151152 |
---|---|
AMA | Lenny BJ, Shanmuganatham K, Sonnberg S, et al. Replication Capacity of Avian Influenza A(H9N2) Virus in Pet Birds and Mammals, Bangladesh. Emerging Infectious Diseases. 2015;21(12):2174-2177. doi:10.3201/eid2112.151152. |
APA | Lenny, B. J., Shanmuganatham, K., Sonnberg, S., Feeroz, M. M., Alam, S., Hasan, M....Jones, J. C. (2015). Replication Capacity of Avian Influenza A(H9N2) Virus in Pet Birds and Mammals, Bangladesh. Emerging Infectious Diseases, 21(12), 2174-2177. https://doi.org/10.3201/eid2112.151152. |
Factors Associated with Severe Leptospirosis, Martinique, 2010–2013
To identify factors associated with disease severity, we examined 102 patients with quantitative PCR–confirmed leptospirosis in Martinique during 2010–2013. Associated factors were hypotension, chest auscultation abnormalities, icterus, oligo/anuria, thrombocytopenia, prothrombin time <68%, high levels of leptospiremia, and infection with L. interrogans serovar Icterohaemorrhagiae/Copenhageni.
EID | Hochedez P, Theodose R, Olive C, Bourhy P, Hurtrel G, Vignier N, et al. Factors Associated with Severe Leptospirosis, Martinique, 2010–2013. Emerg Infect Dis. 2015;21(12):2221-2224. https://doi.org/10.3201/eid2112.141099 |
---|---|
AMA | Hochedez P, Theodose R, Olive C, et al. Factors Associated with Severe Leptospirosis, Martinique, 2010–2013. Emerging Infectious Diseases. 2015;21(12):2221-2224. doi:10.3201/eid2112.141099. |
APA | Hochedez, P., Theodose, R., Olive, C., Bourhy, P., Hurtrel, G., Vignier, N....Cabié, A. (2015). Factors Associated with Severe Leptospirosis, Martinique, 2010–2013. Emerging Infectious Diseases, 21(12), 2221-2224. https://doi.org/10.3201/eid2112.141099. |
Vectorborne Transmission of Leishmania infantum from Hounds, United States
Leishmaniasis is a zoonotic disease caused by predominantly vectorborne Leishmania spp. In the United States, canine visceral leishmaniasis is common among hounds, and L. infantum vertical transmission among hounds has been confirmed. We found that L. infantum from hounds remains infective in sandflies, underscoring the risk for human exposure by vectorborne transmission.
EID | Schaut RG, Robles-Murguia M, Juelsgaard R, Esch KJ, Bartholomay LC, Ramalho-Ortigao M, et al. Vectorborne Transmission of Leishmania infantum from Hounds, United States. Emerg Infect Dis. 2015;21(12):2209-2212. https://doi.org/10.3201/eid2112.141167 |
---|---|
AMA | Schaut RG, Robles-Murguia M, Juelsgaard R, et al. Vectorborne Transmission of Leishmania infantum from Hounds, United States. Emerging Infectious Diseases. 2015;21(12):2209-2212. doi:10.3201/eid2112.141167. |
APA | Schaut, R. G., Robles-Murguia, M., Juelsgaard, R., Esch, K. J., Bartholomay, L. C., Ramalho-Ortigao, M....Petersen, C. A. (2015). Vectorborne Transmission of Leishmania infantum from Hounds, United States. Emerging Infectious Diseases, 21(12), 2209-2212. https://doi.org/10.3201/eid2112.141167. |
Kinetics of Serologic Responses to MERS Coronavirus Infection in Humans, South Korea
We investigated the kinetics of serologic responses to Middle East respiratory syndrome coronavirus (MERS-CoV) infection by using virus neutralization and MERS-CoV S1 IgG ELISA tests. In most patients, robust antibody responses developed by the third week of illness. Delayed antibody responses with the neutralization test were associated with more severe disease.
EID | Park W, Perera R, Choe P, Lau E, Choi S, Chun J, et al. Kinetics of Serologic Responses to MERS Coronavirus Infection in Humans, South Korea. Emerg Infect Dis. 2015;21(12):2186-2189. https://doi.org/10.3201/eid2112.151421 |
---|---|
AMA | Park W, Perera R, Choe P, et al. Kinetics of Serologic Responses to MERS Coronavirus Infection in Humans, South Korea. Emerging Infectious Diseases. 2015;21(12):2186-2189. doi:10.3201/eid2112.151421. |
APA | Park, W., Perera, R., Choe, P., Lau, E., Choi, S., Chun, J....Oh, M. (2015). Kinetics of Serologic Responses to MERS Coronavirus Infection in Humans, South Korea. Emerging Infectious Diseases, 21(12), 2186-2189. https://doi.org/10.3201/eid2112.151421. |
Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya
We conducted standard insecticide susceptibility testing across western Kenya and found that the Anopheles gambiae mosquito has acquired high resistance to pyrethroids and DDT, patchy resistance to carbamates, but no resistance to organophosphates. Use of non–pyrethroid-based vector control tools may be preferable for malaria prevention in this region.
EID | Wanjala CL, Mbugi JP, Ototo E, Gesuge M, Afrane YA, Atieli HE, et al. Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya. Emerg Infect Dis. 2015;21(12):2178-2181. https://doi.org/10.3201/eid2112.150814 |
---|---|
AMA | Wanjala CL, Mbugi JP, Ototo E, et al. Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya. Emerging Infectious Diseases. 2015;21(12):2178-2181. doi:10.3201/eid2112.150814. |
APA | Wanjala, C. L., Mbugi, J. P., Ototo, E., Gesuge, M., Afrane, Y. A., Atieli, H. E....Lo, E. (2015). Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya. Emerging Infectious Diseases, 21(12), 2178-2181. https://doi.org/10.3201/eid2112.150814. |
Association of Human Q Fever with Animal Husbandry, Taiwan, 2004–2012
In Taiwan, Q fever cases in humans began increasing in 2004 and peaked in 2007 but dramatically declined in 2008 and 2011. Cases were significantly correlated with the number of goats. The decline might be associated with the collateral effects of measures to control goat pox in 2008 and 2010.
EID | Lai C, Chang L, Lin J, Liao M, Liu S, Lee H, et al. Association of Human Q Fever with Animal Husbandry, Taiwan, 2004–2012. Emerg Infect Dis. 2015;21(12):2217-2220. https://doi.org/10.3201/eid2112.141997 |
---|---|
AMA | Lai C, Chang L, Lin J, et al. Association of Human Q Fever with Animal Husbandry, Taiwan, 2004–2012. Emerging Infectious Diseases. 2015;21(12):2217-2220. doi:10.3201/eid2112.141997. |
APA | Lai, C., Chang, L., Lin, J., Liao, M., Liu, S., Lee, H....Chen, Y. (2015). Association of Human Q Fever with Animal Husbandry, Taiwan, 2004–2012. Emerging Infectious Diseases, 21(12), 2217-2220. https://doi.org/10.3201/eid2112.141997. |
Methicillin-Resistant Staphylococcus aureus Prevalence among Captive Chimpanzees, Texas, USA, 2012
Methicillin-resistant Staphylococcus aureus (MRSA) infection in humans and animals is concerning. In 2012, our evaluation of a captive chimpanzee colony in Texas revealed MRSA prevalence of 69%. Animal care staff should be aware of possible zoonotic MRSA transmission resulting from high prevalence among captive chimpanzees.
EID | Hanley PW, Barnhart KF, Abee CR, Lambeth SP, Weese J. Methicillin-Resistant Staphylococcus aureus Prevalence among Captive Chimpanzees, Texas, USA, 2012. Emerg Infect Dis. 2015;21(12):2158-2160. https://doi.org/10.3201/eid2112.142004 |
---|---|
AMA | Hanley PW, Barnhart KF, Abee CR, et al. Methicillin-Resistant Staphylococcus aureus Prevalence among Captive Chimpanzees, Texas, USA, 2012. Emerging Infectious Diseases. 2015;21(12):2158-2160. doi:10.3201/eid2112.142004. |
APA | Hanley, P. W., Barnhart, K. F., Abee, C. R., Lambeth, S. P., & Weese, J. (2015). Methicillin-Resistant Staphylococcus aureus Prevalence among Captive Chimpanzees, Texas, USA, 2012. Emerging Infectious Diseases, 21(12), 2158-2160. https://doi.org/10.3201/eid2112.142004. |
Oropharyngeal Tularemia Outbreak Associated with Drinking Contaminated Tap Water, Turkey, July–September 2013
In 2013, an oropharyngeal tularemia outbreak in Turkey affected 55 persons. Drinking tap water during the likely exposure period was significantly associated with illness (attack rate 27% vs. 11% among non–tap water drinkers). Findings showed the tap water source had been contaminated by surface water, and the chlorination device malfunctioned.
EID | Aktas D, Celebi B, Isik M, Tutus C, Ozturk H, Temel F, et al. Oropharyngeal Tularemia Outbreak Associated with Drinking Contaminated Tap Water, Turkey, July–September 2013. Emerg Infect Dis. 2015;21(12):2194-2196. https://doi.org/10.3201/eid2112.142032 |
---|---|
AMA | Aktas D, Celebi B, Isik M, et al. Oropharyngeal Tularemia Outbreak Associated with Drinking Contaminated Tap Water, Turkey, July–September 2013. Emerging Infectious Diseases. 2015;21(12):2194-2196. doi:10.3201/eid2112.142032. |
APA | Aktas, D., Celebi, B., Isik, M., Tutus, C., Ozturk, H., Temel, F....Zhu, B. (2015). Oropharyngeal Tularemia Outbreak Associated with Drinking Contaminated Tap Water, Turkey, July–September 2013. Emerging Infectious Diseases, 21(12), 2194-2196. https://doi.org/10.3201/eid2112.142032. |
Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico
An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc.
EID | Pierlé S, Morales C, Martínez L, Ceballos N, Rivero J, Díaz O, et al. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico. Emerg Infect Dis. 2015;21(12):2161-2163. https://doi.org/10.3201/eid2112.150002 |
---|---|
AMA | Pierlé S, Morales C, Martínez L, et al. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico. Emerging Infectious Diseases. 2015;21(12):2161-2163. doi:10.3201/eid2112.150002. |
APA | Pierlé, S., Morales, C., Martínez, L., Ceballos, N., Rivero, J., Díaz, O....Setién, A. (2015). Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico. Emerging Infectious Diseases, 21(12), 2161-2163. https://doi.org/10.3201/eid2112.150002. |
Porcine Epidemic Diarrhea Virus among Farmed Pigs, Ukraine
An outbreak of porcine epidemic diarrhea occurred in the summer of 2014 in Ukraine, severely affecting piglets <10 days of age; the mortality rate approached 100%. Full genome sequencing showed the virus to be closely related to strains reported from North America, showing a sequence identity of up to 99.8%.
EID | Dastjerdi A, Carr J, Ellis RJ, Steinbach F, Williamson S. Porcine Epidemic Diarrhea Virus among Farmed Pigs, Ukraine. Emerg Infect Dis. 2015;21(12):2235-2237. https://doi.org/10.3201/eid2112.150272 |
---|---|
AMA | Dastjerdi A, Carr J, Ellis RJ, et al. Porcine Epidemic Diarrhea Virus among Farmed Pigs, Ukraine. Emerging Infectious Diseases. 2015;21(12):2235-2237. doi:10.3201/eid2112.150272. |
APA | Dastjerdi, A., Carr, J., Ellis, R. J., Steinbach, F., & Williamson, S. (2015). Porcine Epidemic Diarrhea Virus among Farmed Pigs, Ukraine. Emerging Infectious Diseases, 21(12), 2235-2237. https://doi.org/10.3201/eid2112.150272. |
Tembusu-Related Flavivirus in Ducks, Thailand
Since 2013, outbreaks of disease caused by duck Tembusu virus (DTMUV) have been observed in layer and broiler duck farms in Thailand. The virus is closely related to Chinese DTMUVs and belongs to the Ntaya group of mosquitoborne flaviviruses. These findings represent the emergence of DTMUV in ducks in Thailand.
EID | Thontiravong A, Ninvilai P, Tunterak W, Nonthabenjawan N, Chaiyavong S, Angkabkingkaew K, et al. Tembusu-Related Flavivirus in Ducks, Thailand. Emerg Infect Dis. 2015;21(12):2164-2167. https://doi.org/10.3201/eid2112.150600 |
---|---|
AMA | Thontiravong A, Ninvilai P, Tunterak W, et al. Tembusu-Related Flavivirus in Ducks, Thailand. Emerging Infectious Diseases. 2015;21(12):2164-2167. doi:10.3201/eid2112.150600. |
APA | Thontiravong, A., Ninvilai, P., Tunterak, W., Nonthabenjawan, N., Chaiyavong, S., Angkabkingkaew, K....Amonsin, A. (2015). Tembusu-Related Flavivirus in Ducks, Thailand. Emerging Infectious Diseases, 21(12), 2164-2167. https://doi.org/10.3201/eid2112.150600. |
Sochi virus was recently identified as a new hantavirus genotype carried by the Black Sea field mouse, Apodemus ponticus. We evaluated 62 patients in Russia with Sochi virus infection. Most clinical cases were severe, and the case-fatality rate was as high as 14.5%.
EID | Kruger DH, Tkachenko EA, Morozov VG, Yunicheva YV, Pilikova OM, Malkin G, et al. Life-Threatening Sochi Virus Infections, Russia. Emerg Infect Dis. 2015;21(12):2204-2208. https://doi.org/10.3201/eid2112.150891 |
---|---|
AMA | Kruger DH, Tkachenko EA, Morozov VG, et al. Life-Threatening Sochi Virus Infections, Russia. Emerging Infectious Diseases. 2015;21(12):2204-2208. doi:10.3201/eid2112.150891. |
APA | Kruger, D. H., Tkachenko, E. A., Morozov, V. G., Yunicheva, Y. V., Pilikova, O. M., Malkin, G....Dzagurova, T. K. (2015). Life-Threatening Sochi Virus Infections, Russia. Emerging Infectious Diseases, 21(12), 2204-2208. https://doi.org/10.3201/eid2112.150891. |
Increased Number of Human Cases of Influenza Virus A(H5N1) Infection, Egypt, 2014–15
During November 2014–April 2015, a total of 165 case-patients with influenza virus A(H5N1) infection, including 6 clusters and 51 deaths, were identified in Egypt. Among infected persons, 99% reported poultry exposure: 19% to ill poultry and 35% to dead poultry. Only 1 person reported wearing personal protective equipment while working with poultry.
EID | Refaey S, Azziz-Baumgartner E, Amin M, Fahim M, Roguski K, Elaziz H, et al. Increased Number of Human Cases of Influenza Virus A(H5N1) Infection, Egypt, 2014–15. Emerg Infect Dis. 2015;21(12):2171-2173. https://doi.org/10.3201/eid2112.150885 |
---|---|
AMA | Refaey S, Azziz-Baumgartner E, Amin M, et al. Increased Number of Human Cases of Influenza Virus A(H5N1) Infection, Egypt, 2014–15. Emerging Infectious Diseases. 2015;21(12):2171-2173. doi:10.3201/eid2112.150885. |
APA | Refaey, S., Azziz-Baumgartner, E., Amin, M., Fahim, M., Roguski, K., Elaziz, H....Kandeel, A. (2015). Increased Number of Human Cases of Influenza Virus A(H5N1) Infection, Egypt, 2014–15. Emerging Infectious Diseases, 21(12), 2171-2173. https://doi.org/10.3201/eid2112.150885. |
No Evidence of Gouléako and Herbert Virus Infections in Pigs, Côte d’Ivoire and Ghana
A recent report suggested that 2 novel bunyaviruses discovered in insects in Côte d’Ivoire caused lethal disease in swine in South Korea. We conducted cell culture studies and tested serum from pigs exposed to mosquitoes in Côte d’Ivoire and Ghana and found no evidence for infection in pigs.
EID | Junglen S, Marklewitz M, Zirkel F, Wollny R, Meyer B, Heidemann H, et al. No Evidence of Gouléako and Herbert Virus Infections in Pigs, Côte d’Ivoire and Ghana. Emerg Infect Dis. 2015;21(12):2190-2193. https://doi.org/10.3201/eid2112.141840 |
---|---|
AMA | Junglen S, Marklewitz M, Zirkel F, et al. No Evidence of Gouléako and Herbert Virus Infections in Pigs, Côte d’Ivoire and Ghana. Emerging Infectious Diseases. 2015;21(12):2190-2193. doi:10.3201/eid2112.141840. |
APA | Junglen, S., Marklewitz, M., Zirkel, F., Wollny, R., Meyer, B., Heidemann, H....Park, S. (2015). No Evidence of Gouléako and Herbert Virus Infections in Pigs, Côte d’Ivoire and Ghana. Emerging Infectious Diseases, 21(12), 2190-2193. https://doi.org/10.3201/eid2112.141840. |
Influenza A(H6N1) Virus in Dogs, Taiwan
We determined the prevalence of influenza A virus in dogs in Taiwan and isolated A/canine/Taiwan/E01/2014. Molecular analysis indicated that this isolate was closely related to influenza A(H6N1) viruses circulating in Taiwan and harbored the E627K substitution in the polymerase basic 2 protein, which indicated its ability to replicate in mammalian species.
EID | Lin H, Wang C, Chueh L, Su B, Wang L. Influenza A(H6N1) Virus in Dogs, Taiwan. Emerg Infect Dis. 2015;21(12):2154-2157. https://doi.org/10.3201/eid2112.141229 |
---|---|
AMA | Lin H, Wang C, Chueh L, et al. Influenza A(H6N1) Virus in Dogs, Taiwan. Emerging Infectious Diseases. 2015;21(12):2154-2157. doi:10.3201/eid2112.141229. |
APA | Lin, H., Wang, C., Chueh, L., Su, B., & Wang, L. (2015). Influenza A(H6N1) Virus in Dogs, Taiwan. Emerging Infectious Diseases, 21(12), 2154-2157. https://doi.org/10.3201/eid2112.141229. |
Sindbis and Middelburg Old World Alphaviruses Associated with Neurologic Disease in Horses, South Africa
Old World alphaviruses were identified in 52 of 623 horses with febrile or neurologic disease in South Africa. Five of 8 Sindbis virus infections were mild; 2 of 3 fatal cases involved co-infections. Of 44 Middelburg virus infections, 28 caused neurologic disease; 12 were fatal. Middelburg virus likely has zoonotic potential.
EID | van Niekerk S, Human S, Williams J, van Wilpe E, Pretorius M, Swanepoel R, et al. Sindbis and Middelburg Old World Alphaviruses Associated with Neurologic Disease in Horses, South Africa. Emerg Infect Dis. 2015;21(12):2225-2229. https://doi.org/10.3201/eid2112.150132 |
---|---|
AMA | van Niekerk S, Human S, Williams J, et al. Sindbis and Middelburg Old World Alphaviruses Associated with Neurologic Disease in Horses, South Africa. Emerging Infectious Diseases. 2015;21(12):2225-2229. doi:10.3201/eid2112.150132. |
APA | van Niekerk, S., Human, S., Williams, J., van Wilpe, E., Pretorius, M., Swanepoel, R....Venter, M. (2015). Sindbis and Middelburg Old World Alphaviruses Associated with Neurologic Disease in Horses, South Africa. Emerging Infectious Diseases, 21(12), 2225-2229. https://doi.org/10.3201/eid2112.150132. |
Spillover of Peste des Petits Ruminants Virus from Domestic to Wild Ruminants in the Serengeti Ecosystem, Tanzania
We tested wildlife inhabiting areas near domestic livestock, pastures, and water sources in the Ngorongoro district in the Serengeti ecosystem of northern Tanzania and found 63% seropositivity for peste des petits ruminants virus. Sequencing of the viral genome from sick sheep in the area confirmed lineage II virus circulation.
EID | Mahapatra M, Sayalel K, Muniraju M, Eblate E, Fyumagwa RD, Shilinde L, et al. Spillover of Peste des Petits Ruminants Virus from Domestic to Wild Ruminants in the Serengeti Ecosystem, Tanzania. Emerg Infect Dis. 2015;21(12):2230-2234. https://doi.org/10.3201/eid2112.150223 |
---|---|
AMA | Mahapatra M, Sayalel K, Muniraju M, et al. Spillover of Peste des Petits Ruminants Virus from Domestic to Wild Ruminants in the Serengeti Ecosystem, Tanzania. Emerging Infectious Diseases. 2015;21(12):2230-2234. doi:10.3201/eid2112.150223. |
APA | Mahapatra, M., Sayalel, K., Muniraju, M., Eblate, E., Fyumagwa, R. D., Shilinde, L....Kock, R. (2015). Spillover of Peste des Petits Ruminants Virus from Domestic to Wild Ruminants in the Serengeti Ecosystem, Tanzania. Emerging Infectious Diseases, 21(12), 2230-2234. https://doi.org/10.3201/eid2112.150223. |
Japanese Macaques (Macaca fuscata) as Natural Reservoir of Bartonella quintana
Bartonella quintana bacteremia was detected in 6 (13.3%) of 45 wild-caught Japanese macaques (Macaca fuscata). Multilocus sequence typing of the isolates revealed that Japanese macaques were infected with a new and specific B. quintana sequence type. Free-ranging Japanese macaques thus represent another natural reservoir of B. quintana.
EID | Sato S, Kabeya H, Yoshino A, Sekine W, Suzuki K, Tamate HB, et al. Japanese Macaques (Macaca fuscata) as Natural Reservoir of Bartonella quintana. Emerg Infect Dis. 2015;21(12):2168-2170. https://doi.org/10.3201/eid2112.150632 |
---|---|
AMA | Sato S, Kabeya H, Yoshino A, et al. Japanese Macaques (Macaca fuscata) as Natural Reservoir of Bartonella quintana. Emerging Infectious Diseases. 2015;21(12):2168-2170. doi:10.3201/eid2112.150632. |
APA | Sato, S., Kabeya, H., Yoshino, A., Sekine, W., Suzuki, K., Tamate, H. B....Maruyama, S. (2015). Japanese Macaques (Macaca fuscata) as Natural Reservoir of Bartonella quintana. Emerging Infectious Diseases, 21(12), 2168-2170. https://doi.org/10.3201/eid2112.150632. |
Water as Source of Francisella tularensis Infection in Humans, Turkey
Francisella tularensis DNA extractions and isolates from the environment and humans were genetically characterized to elucidate environmental sources that cause human tularemia in Turkey. Extensive genetic diversity consistent with genotypes from human outbreaks was identified in environmental samples and confirmed water as a source of human tularemia in Turkey.
EID | Kilic S, Birdsell DN, Karagöz A, Çelebi B, Bakkaloglu Z, Arikan M, et al. Water as Source of Francisella tularensis Infection in Humans, Turkey. Emerg Infect Dis. 2015;21(12):2213-2216. https://doi.org/10.3201/eid2112.150634 |
---|---|
AMA | Kilic S, Birdsell DN, Karagöz A, et al. Water as Source of Francisella tularensis Infection in Humans, Turkey. Emerging Infectious Diseases. 2015;21(12):2213-2216. doi:10.3201/eid2112.150634. |
APA | Kilic, S., Birdsell, D. N., Karagöz, A., Çelebi, B., Bakkaloglu, Z., Arikan, M....Wagner, D. M. (2015). Water as Source of Francisella tularensis Infection in Humans, Turkey. Emerging Infectious Diseases, 21(12), 2213-2216. https://doi.org/10.3201/eid2112.150634. |
Aquatic Bird Bornavirus 1 in Wild Geese, Denmark
To investigate aquatic bird bornavirus 1 in Europe, we examined 333 brains from hunter-killed geese in Denmark in 2014. Seven samples were positive by reverse transcription PCR and were 98.2%–99.8% identical; they were also 97.4%–98.1% identical to reference strains of aquatic bird bornavirus 1 from geese in North America.
EID | Thomsen AF, Nielsen JB, Hjulsager CK, Chriél M, Smith DA, Bertelsen MF. Aquatic Bird Bornavirus 1 in Wild Geese, Denmark. Emerg Infect Dis. 2015;21(12):2201-2203. https://doi.org/10.3201/eid2112.150650 |
---|---|
AMA | Thomsen AF, Nielsen JB, Hjulsager CK, et al. Aquatic Bird Bornavirus 1 in Wild Geese, Denmark. Emerging Infectious Diseases. 2015;21(12):2201-2203. doi:10.3201/eid2112.150650. |
APA | Thomsen, A. F., Nielsen, J. B., Hjulsager, C. K., Chriél, M., Smith, D. A., & Bertelsen, M. F. (2015). Aquatic Bird Bornavirus 1 in Wild Geese, Denmark. Emerging Infectious Diseases, 21(12), 2201-2203. https://doi.org/10.3201/eid2112.150650. |
Letters
Alternative Routes of Zoonotic Vaccinia Virus Transmission, Brazil
EID | Costa GB, Borges IA, Alves PA, Miranda JB, Luiz A, Ferreira P, et al. Alternative Routes of Zoonotic Vaccinia Virus Transmission, Brazil. Emerg Infect Dis. 2015;21(12):2244-2246. https://doi.org/10.3201/eid2112.141249 |
---|---|
AMA | Costa GB, Borges IA, Alves PA, et al. Alternative Routes of Zoonotic Vaccinia Virus Transmission, Brazil. Emerging Infectious Diseases. 2015;21(12):2244-2246. doi:10.3201/eid2112.141249. |
APA | Costa, G. B., Borges, I. A., Alves, P. A., Miranda, J. B., Luiz, A., Ferreira, P....Trindade, G. (2015). Alternative Routes of Zoonotic Vaccinia Virus Transmission, Brazil. Emerging Infectious Diseases, 21(12), 2244-2246. https://doi.org/10.3201/eid2112.141249. |
Serologic Evidence of Influenza A (H14) Virus Introduction into North America
EID | Latorre-Margalef N, Ramey AM, Fojtik A, Stallknecht DE. Serologic Evidence of Influenza A (H14) Virus Introduction into North America. Emerg Infect Dis. 2015;21(12):2257-2259. https://doi.org/10.3201/eid2112.150413 |
---|---|
AMA | Latorre-Margalef N, Ramey AM, Fojtik A, et al. Serologic Evidence of Influenza A (H14) Virus Introduction into North America. Emerging Infectious Diseases. 2015;21(12):2257-2259. doi:10.3201/eid2112.150413. |
APA | Latorre-Margalef, N., Ramey, A. M., Fojtik, A., & Stallknecht, D. E. (2015). Serologic Evidence of Influenza A (H14) Virus Introduction into North America. Emerging Infectious Diseases, 21(12), 2257-2259. https://doi.org/10.3201/eid2112.150413. |
Genetic Characterization of Highly Pathogenic Avian Influenza A(H5N6) Virus, Guangdong, China
EID | Mok C, Da Guan W, Liu X, Lamers M, Li X, Wang M, et al. Genetic Characterization of Highly Pathogenic Avian Influenza A(H5N6) Virus, Guangdong, China. Emerg Infect Dis. 2015;21(12):2268-2271. https://doi.org/10.3201/eid2112.150809 |
---|---|
AMA | Mok C, Da Guan W, Liu X, et al. Genetic Characterization of Highly Pathogenic Avian Influenza A(H5N6) Virus, Guangdong, China. Emerging Infectious Diseases. 2015;21(12):2268-2271. doi:10.3201/eid2112.150809. |
APA | Mok, C., Da Guan, W., Liu, X., Lamers, M., Li, X., Wang, M....Yang, Z. (2015). Genetic Characterization of Highly Pathogenic Avian Influenza A(H5N6) Virus, Guangdong, China. Emerging Infectious Diseases, 21(12), 2268-2271. https://doi.org/10.3201/eid2112.150809. |
NADC30-like Strain of Porcine Reproductive and Respiratory Syndrome Virus, China
EID | Zhou L, Wang Z, Ding Y, Ge X, Guo X, Yang H. NADC30-like Strain of Porcine Reproductive and Respiratory Syndrome Virus, China. Emerg Infect Dis. 2015;21(12):2256-2257. https://doi.org/10.3201/eid2112.150360 |
---|---|
AMA | Zhou L, Wang Z, Ding Y, et al. NADC30-like Strain of Porcine Reproductive and Respiratory Syndrome Virus, China. Emerging Infectious Diseases. 2015;21(12):2256-2257. doi:10.3201/eid2112.150360. |
APA | Zhou, L., Wang, Z., Ding, Y., Ge, X., Guo, X., & Yang, H. (2015). NADC30-like Strain of Porcine Reproductive and Respiratory Syndrome Virus, China. Emerging Infectious Diseases, 21(12), 2256-2257. https://doi.org/10.3201/eid2112.150360. |
Characteristics of Traveler with Middle East Respiratory Syndrome, China, 2015
EID | Da Guan W, Mok C, Chen Z, Feng L, Li Z, Huang J, et al. Characteristics of Traveler with Middle East Respiratory Syndrome, China, 2015. Emerg Infect Dis. 2015;21(12):2278-2280. https://doi.org/10.3201/eid2112.151232 |
---|---|
AMA | Da Guan W, Mok C, Chen Z, et al. Characteristics of Traveler with Middle East Respiratory Syndrome, China, 2015. Emerging Infectious Diseases. 2015;21(12):2278-2280. doi:10.3201/eid2112.151232. |
APA | Da Guan, W., Mok, C., Chen, Z., Feng, L., Li, Z., Huang, J....Zhong, N. (2015). Characteristics of Traveler with Middle East Respiratory Syndrome, China, 2015. Emerging Infectious Diseases, 21(12), 2278-2280. https://doi.org/10.3201/eid2112.151232. |
CTX-M-15–Producing Escherichia coli in Dolphin, Portugal
EID | Manageiro V, Clemente L, Jones-Dias D, Albuquerque T, Ferreira E, Caniça M. CTX-M-15–Producing Escherichia coli in Dolphin, Portugal. Emerg Infect Dis. 2015;21(12):2249-2251. https://doi.org/10.3201/eid2112.141963 |
---|---|
AMA | Manageiro V, Clemente L, Jones-Dias D, et al. CTX-M-15–Producing Escherichia coli in Dolphin, Portugal. Emerging Infectious Diseases. 2015;21(12):2249-2251. doi:10.3201/eid2112.141963. |
APA | Manageiro, V., Clemente, L., Jones-Dias, D., Albuquerque, T., Ferreira, E., & Caniça, M. (2015). CTX-M-15–Producing Escherichia coli in Dolphin, Portugal. Emerging Infectious Diseases, 21(12), 2249-2251. https://doi.org/10.3201/eid2112.141963. |
Porcine Deltacoronavirus in Mainland China
EID | Dong N, Fang L, Zeng S, Sun Q, Chen H, Xiao S. Porcine Deltacoronavirus in Mainland China. Emerg Infect Dis. 2015;21(12):2254-2255. https://doi.org/10.3201/eid2112.150283 |
---|---|
AMA | Dong N, Fang L, Zeng S, et al. Porcine Deltacoronavirus in Mainland China. Emerging Infectious Diseases. 2015;21(12):2254-2255. doi:10.3201/eid2112.150283. |
APA | Dong, N., Fang, L., Zeng, S., Sun, Q., Chen, H., & Xiao, S. (2015). Porcine Deltacoronavirus in Mainland China. Emerging Infectious Diseases, 21(12), 2254-2255. https://doi.org/10.3201/eid2112.150283. |
Outbreak of Exanthematous Illness Associated with Zika, Chikungunya, and Dengue Viruses, Salvador, Brazil
EID | Cardoso CW, Paploski I, Kikuti M, Rodrigues MS, Silva M, Campos GS, et al. Outbreak of Exanthematous Illness Associated with Zika, Chikungunya, and Dengue Viruses, Salvador, Brazil. Emerg Infect Dis. 2015;21(12):2274-2276. https://doi.org/10.3201/eid2112.151167 |
---|---|
AMA | Cardoso CW, Paploski I, Kikuti M, et al. Outbreak of Exanthematous Illness Associated with Zika, Chikungunya, and Dengue Viruses, Salvador, Brazil. Emerging Infectious Diseases. 2015;21(12):2274-2276. doi:10.3201/eid2112.151167. |
APA | Cardoso, C. W., Paploski, I., Kikuti, M., Rodrigues, M. S., Silva, M., Campos, G. S....Ribeiro, G. S. (2015). Outbreak of Exanthematous Illness Associated with Zika, Chikungunya, and Dengue Viruses, Salvador, Brazil. Emerging Infectious Diseases, 21(12), 2274-2276. https://doi.org/10.3201/eid2112.151167. |
Toxoplasma gondii in Wild Red Squirrels, the Netherlands, 2014
EID | Kik M, IJzer J, Opsteegh M, Montizaan M, Dijkstra V, Rijks JM, et al. Toxoplasma gondii in Wild Red Squirrels, the Netherlands, 2014. Emerg Infect Dis. 2015;21(12):2248-2249. https://doi.org/10.3201/eid2112.141711 |
---|---|
AMA | Kik M, IJzer J, Opsteegh M, et al. Toxoplasma gondii in Wild Red Squirrels, the Netherlands, 2014. Emerging Infectious Diseases. 2015;21(12):2248-2249. doi:10.3201/eid2112.141711. |
APA | Kik, M., IJzer, J., Opsteegh, M., Montizaan, M., Dijkstra, V., Rijks, J. M....Gröne, A. (2015). Toxoplasma gondii in Wild Red Squirrels, the Netherlands, 2014. Emerging Infectious Diseases, 21(12), 2248-2249. https://doi.org/10.3201/eid2112.141711. |
Tickborne Lymphadenopathy Complicated by Acute Myopericarditis, Spain
EID | Silva J, López-Medrano F, Fernández-Ruiz M, Foz E, Portillo A, Oteo JA, et al. Tickborne Lymphadenopathy Complicated by Acute Myopericarditis, Spain. Emerg Infect Dis. 2015;21(12):2240-2242. https://doi.org/10.3201/eid2112.150672 |
---|---|
AMA | Silva J, López-Medrano F, Fernández-Ruiz M, et al. Tickborne Lymphadenopathy Complicated by Acute Myopericarditis, Spain. Emerging Infectious Diseases. 2015;21(12):2240-2242. doi:10.3201/eid2112.150672. |
APA | Silva, J., López-Medrano, F., Fernández-Ruiz, M., Foz, E., Portillo, A., Oteo, J. A....Aguado, J. (2015). Tickborne Lymphadenopathy Complicated by Acute Myopericarditis, Spain. Emerging Infectious Diseases, 21(12), 2240-2242. https://doi.org/10.3201/eid2112.150672. |
Use of Capture–Recapture to Estimate Underreporting of Ebola Virus Disease, Montserrado County, Liberia
EID | Gignoux E, Idowu R, Bawo L, Hurum L, Sprecher A, Bastard M, et al. Use of Capture–Recapture to Estimate Underreporting of Ebola Virus Disease, Montserrado County, Liberia. Emerg Infect Dis. 2015;21(12):2265-2267. https://doi.org/10.3201/eid2112.150756 |
---|---|
AMA | Gignoux E, Idowu R, Bawo L, et al. Use of Capture–Recapture to Estimate Underreporting of Ebola Virus Disease, Montserrado County, Liberia. Emerging Infectious Diseases. 2015;21(12):2265-2267. doi:10.3201/eid2112.150756. |
APA | Gignoux, E., Idowu, R., Bawo, L., Hurum, L., Sprecher, A., Bastard, M....Porten, K. (2015). Use of Capture–Recapture to Estimate Underreporting of Ebola Virus Disease, Montserrado County, Liberia. Emerging Infectious Diseases, 21(12), 2265-2267. https://doi.org/10.3201/eid2112.150756. |
Probability of Spirochete Borrelia miyamotoi Transmission from Ticks to Humans
EID | Sarksyan DS, Platonov AE, Karan L, Shipulin GA, Sprong H, Hovius J. Probability of Spirochete Borrelia miyamotoi Transmission from Ticks to Humans. Emerg Infect Dis. 2015;21(12):2273-2274. https://doi.org/10.3201/eid2112.151097 |
---|---|
AMA | Sarksyan DS, Platonov AE, Karan L, et al. Probability of Spirochete Borrelia miyamotoi Transmission from Ticks to Humans. Emerging Infectious Diseases. 2015;21(12):2273-2274. doi:10.3201/eid2112.151097. |
APA | Sarksyan, D. S., Platonov, A. E., Karan, L., Shipulin, G. A., Sprong, H., & Hovius, J. (2015). Probability of Spirochete Borrelia miyamotoi Transmission from Ticks to Humans. Emerging Infectious Diseases, 21(12), 2273-2274. https://doi.org/10.3201/eid2112.151097. |
Human Alveolar Echinococcosis, Czech Republic, 2007–2014
EID | Kolářová L, Matějů J, Hrdý J, Kolářová H, Hozáková L, Žampachová V, et al. Human Alveolar Echinococcosis, Czech Republic, 2007–2014. Emerg Infect Dis. 2015;21(12):2263-2265. https://doi.org/10.3201/eid2112.150743 |
---|---|
AMA | Kolářová L, Matějů J, Hrdý J, et al. Human Alveolar Echinococcosis, Czech Republic, 2007–2014. Emerging Infectious Diseases. 2015;21(12):2263-2265. doi:10.3201/eid2112.150743. |
APA | Kolářová, L., Matějů, J., Hrdý, J., Kolářová, H., Hozáková, L., Žampachová, V....Stejskal, F. (2015). Human Alveolar Echinococcosis, Czech Republic, 2007–2014. Emerging Infectious Diseases, 21(12), 2263-2265. https://doi.org/10.3201/eid2112.150743. |
Hunter Island Group Phlebovirus in Ticks, Australia
EID | Gauci PJ, McAllister J, Mitchell IR, St. George TD, Cybinski DH, Davis SS, et al. Hunter Island Group Phlebovirus in Ticks, Australia. Emerg Infect Dis. 2015;21(12):2246-2248. https://doi.org/10.3201/eid2112.141303 |
---|---|
AMA | Gauci PJ, McAllister J, Mitchell IR, et al. Hunter Island Group Phlebovirus in Ticks, Australia. Emerging Infectious Diseases. 2015;21(12):2246-2248. doi:10.3201/eid2112.141303. |
APA | Gauci, P. J., McAllister, J., Mitchell, I. R., St. George, T. D., Cybinski, D. H., Davis, S. S....Gubala, A. J. (2015). Hunter Island Group Phlebovirus in Ticks, Australia. Emerging Infectious Diseases, 21(12), 2246-2248. https://doi.org/10.3201/eid2112.141303. |
Onchocerca lupi Nematode in Cat, Portugal
EID | Maia C, Annoscia G, Latrofa M, Pereira A, Giannelli A, Pedroso L, et al. Onchocerca lupi Nematode in Cat, Portugal. Emerg Infect Dis. 2015;21(12):2252-2254. https://doi.org/10.3201/eid2112.150061 |
---|---|
AMA | Maia C, Annoscia G, Latrofa M, et al. Onchocerca lupi Nematode in Cat, Portugal. Emerging Infectious Diseases. 2015;21(12):2252-2254. doi:10.3201/eid2112.150061. |
APA | Maia, C., Annoscia, G., Latrofa, M., Pereira, A., Giannelli, A., Pedroso, L....Otranto, D. (2015). Onchocerca lupi Nematode in Cat, Portugal. Emerging Infectious Diseases, 21(12), 2252-2254. https://doi.org/10.3201/eid2112.150061. |
Parainfluenza Virus 5 as Possible Cause of Severe Respiratory Disease in Calves, China
EID | Liu Y, Li N, Zhang S, Zhang F, Lian H, Hu R. Parainfluenza Virus 5 as Possible Cause of Severe Respiratory Disease in Calves, China. Emerg Infect Dis. 2015;21(12):2242-2244. https://doi.org/10.3201/eid2112.141111 |
---|---|
AMA | Liu Y, Li N, Zhang S, et al. Parainfluenza Virus 5 as Possible Cause of Severe Respiratory Disease in Calves, China. Emerging Infectious Diseases. 2015;21(12):2242-2244. doi:10.3201/eid2112.141111. |
APA | Liu, Y., Li, N., Zhang, S., Zhang, F., Lian, H., & Hu, R. (2015). Parainfluenza Virus 5 as Possible Cause of Severe Respiratory Disease in Calves, China. Emerging Infectious Diseases, 21(12), 2242-2244. https://doi.org/10.3201/eid2112.141111. |
Isolation of Porcine Epidemic Diarrhea Virus during Outbreaks in South Korea, 2013–2014
EID | Chung H, Nguyen V, Moon H, Lee J, Park S, Lee G, et al. Isolation of Porcine Epidemic Diarrhea Virus during Outbreaks in South Korea, 2013–2014. Emerg Infect Dis. 2015;21(12):2238-2240. https://doi.org/10.3201/eid2112.150437 |
---|---|
AMA | Chung H, Nguyen V, Moon H, et al. Isolation of Porcine Epidemic Diarrhea Virus during Outbreaks in South Korea, 2013–2014. Emerging Infectious Diseases. 2015;21(12):2238-2240. doi:10.3201/eid2112.150437. |
APA | Chung, H., Nguyen, V., Moon, H., Lee, J., Park, S., Lee, G....Park, B. (2015). Isolation of Porcine Epidemic Diarrhea Virus during Outbreaks in South Korea, 2013–2014. Emerging Infectious Diseases, 21(12), 2238-2240. https://doi.org/10.3201/eid2112.150437. |
Disseminated Infection Caused by Francisella philomiragia, France, 2014
EID | Kreitmann L, Terriou L, Launay D, Caspar Y, Courcol R, Maurin M, et al. Disseminated Infection Caused by Francisella philomiragia, France, 2014. Emerg Infect Dis. 2015;21(12):2260-2261. https://doi.org/10.3201/eid2112.150615 |
---|---|
AMA | Kreitmann L, Terriou L, Launay D, et al. Disseminated Infection Caused by Francisella philomiragia, France, 2014. Emerging Infectious Diseases. 2015;21(12):2260-2261. doi:10.3201/eid2112.150615. |
APA | Kreitmann, L., Terriou, L., Launay, D., Caspar, Y., Courcol, R., Maurin, M....Lemaître, N. (2015). Disseminated Infection Caused by Francisella philomiragia, France, 2014. Emerging Infectious Diseases, 21(12), 2260-2261. https://doi.org/10.3201/eid2112.150615. |
Severe Ocular Cowpox in a Human, Finland
EID | Kinnunen PM, Holopainen JM, Hemmilä H, Piiparinen H, Sironen T, Kivelä T, et al. Severe Ocular Cowpox in a Human, Finland. Emerg Infect Dis. 2015;21(12):2261-2263. https://doi.org/10.3201/eid2112.150621 |
---|---|
AMA | Kinnunen PM, Holopainen JM, Hemmilä H, et al. Severe Ocular Cowpox in a Human, Finland. Emerging Infectious Diseases. 2015;21(12):2261-2263. doi:10.3201/eid2112.150621. |
APA | Kinnunen, P. M., Holopainen, J. M., Hemmilä, H., Piiparinen, H., Sironen, T., Kivelä, T....Vapalahti, O. (2015). Severe Ocular Cowpox in a Human, Finland. Emerging Infectious Diseases, 21(12), 2261-2263. https://doi.org/10.3201/eid2112.150621. |
Malformations Caused by Shuni Virus in Ruminants, Israel, 2014–2015
EID | Golender N, Brenner J, Valdman M, Khinich Y, Bumbarov V, Panshin A, et al. Malformations Caused by Shuni Virus in Ruminants, Israel, 2014–2015. Emerg Infect Dis. 2015;21(12):2267-2268. https://doi.org/10.3201/eid2112.150804 |
---|---|
AMA | Golender N, Brenner J, Valdman M, et al. Malformations Caused by Shuni Virus in Ruminants, Israel, 2014–2015. Emerging Infectious Diseases. 2015;21(12):2267-2268. doi:10.3201/eid2112.150804. |
APA | Golender, N., Brenner, J., Valdman, M., Khinich, Y., Bumbarov, V., Panshin, A....Behar, A. (2015). Malformations Caused by Shuni Virus in Ruminants, Israel, 2014–2015. Emerging Infectious Diseases, 21(12), 2267-2268. https://doi.org/10.3201/eid2112.150804. |
Emerging Rabbit Hemorrhagic Disease Virus 2 (RHDVb), Australia
EID | Hall RN, Mahar JE, Haboury S, Stevens V, Holmes EC, Strive T. Emerging Rabbit Hemorrhagic Disease Virus 2 (RHDVb), Australia. Emerg Infect Dis. 2015;21(12):2276-2278. https://doi.org/10.3201/eid2112.151210 |
---|---|
AMA | Hall RN, Mahar JE, Haboury S, et al. Emerging Rabbit Hemorrhagic Disease Virus 2 (RHDVb), Australia. Emerging Infectious Diseases. 2015;21(12):2276-2278. doi:10.3201/eid2112.151210. |
APA | Hall, R. N., Mahar, J. E., Haboury, S., Stevens, V., Holmes, E. C., & Strive, T. (2015). Emerging Rabbit Hemorrhagic Disease Virus 2 (RHDVb), Australia. Emerging Infectious Diseases, 21(12), 2276-2278. https://doi.org/10.3201/eid2112.151210. |
Surveillance for Ebola Virus in Wildlife, Thailand
EID | Wacharapluesadee S, Olival KJ, Kanchanasaka B, Duengkae P, Kaewchot S, Srongmongkol P, et al. Surveillance for Ebola Virus in Wildlife, Thailand. Emerg Infect Dis. 2015;21(12):2271-2273. https://doi.org/10.3201/eid2112.150860 |
---|---|
AMA | Wacharapluesadee S, Olival KJ, Kanchanasaka B, et al. Surveillance for Ebola Virus in Wildlife, Thailand. Emerging Infectious Diseases. 2015;21(12):2271-2273. doi:10.3201/eid2112.150860. |
APA | Wacharapluesadee, S., Olival, K. J., Kanchanasaka, B., Duengkae, P., Kaewchot, S., Srongmongkol, P....Hemachudha, T. (2015). Surveillance for Ebola Virus in Wildlife, Thailand. Emerging Infectious Diseases, 21(12), 2271-2273. https://doi.org/10.3201/eid2112.150860. |
Books and Media
The Politics and Crisis Management of Animal Health Security
EID | McQuiston J. The Politics and Crisis Management of Animal Health Security. Emerg Infect Dis. 2015;21(12):2281. https://doi.org/10.3201/eid2112.151507 |
---|---|
AMA | McQuiston J. The Politics and Crisis Management of Animal Health Security. Emerging Infectious Diseases. 2015;21(12):2281. doi:10.3201/eid2112.151507. |
APA | McQuiston, J. (2015). The Politics and Crisis Management of Animal Health Security. Emerging Infectious Diseases, 21(12), 2281. https://doi.org/10.3201/eid2112.151507. |
Etymologia
Etymologia: Leprosy
About the Cover
Anthropomorphism to Zoonoses: Two Inevitable Consequences of Human–Animal Relationships
EID | Breedlove B, Arguin PM. Anthropomorphism to Zoonoses: Two Inevitable Consequences of Human–Animal Relationships. Emerg Infect Dis. 2015;21(12):2282-2283. https://doi.org/10.3201/eid2112.ac2112 |
---|---|
AMA | Breedlove B, Arguin PM. Anthropomorphism to Zoonoses: Two Inevitable Consequences of Human–Animal Relationships. Emerging Infectious Diseases. 2015;21(12):2282-2283. doi:10.3201/eid2112.ac2112. |
APA | Breedlove, B., & Arguin, P. M. (2015). Anthropomorphism to Zoonoses: Two Inevitable Consequences of Human–Animal Relationships. Emerging Infectious Diseases, 21(12), 2282-2283. https://doi.org/10.3201/eid2112.ac2112. |